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Goals:

We highlight the category-theoretic bent of recent work in abstract
model theory, particularly that involving abstract elementary
classes (AECs), and make a connection with a subject of current
research within category theory—accessible categories.

We also address the following questions:

I Can we find meaningful analogues/translations of AEC notions
in the category-theoretic framework? Categoricity? Stability?

I Does the shift in perspective yield model-theoretic dividends?
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Classification Theory: T complete first order theory.

I Categoricity: number of isomorphism classes of models in each
cardinality.

Theorem (Morley, ’65; Shelah, ’70)

If T categorical in some λ > |T |, it’s categorical in all λ > |T |.

I Stability: number and complexity of syntactic types in T .

I Invariants: combinatorial geometries, dependence relations,
bases, dimension...

Problem: elementary classes—classes of models of such
theories—do not exhaust the interesting classes of mathematical
objects.
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Concretely, we would like our results to encompass nonelementary
examples like:

I Banach spaces.

I Artinian commutative rings with unit.

I (C,+, ·, exp).

Abstractly, we would like analogous results for classes of models of
sentences in infinitary logics (such as L∞,ω) or logics incorporating
the quantifier Q (“there exist uncountably many. . . ”).

For the purposes of this talk, abstract model theory is the research
program focused on sniffing out the fragment of classification
theory that is common to all such classes.
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To achieve that end, we cannot work piecemeal—logic by logic—as
results do not generalize well.

Strategy: abandon syntax and logic-dependent structure entirely,
and simply work with abstract classes of structures equipped with
a strong substructure relation that retains certain essential
properties of elementary embedding.

Hence abstract elementary classes—which can (and perhaps
should) be regarded as the category-theoretic hulls of elementary
classes.
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An Abstract Elementary Class (AEC) is a nonempty class K of
structures in a given signature, closed under isomorphism,
equipped with a strong substructure relation, ≺K, that satisfies:
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I Löwenheim-Skolem: Exists cardinal LS(K) such that for any
M ∈ K, subset A ⊆ M, there is an M0 ∈ K with
A ⊆ M0≺KM and |M0| ≤ |A|+ LS(K).

Michael LiebermanMasaryk University Categories in abstract model theory



Model-theoretic Context
Abstract Elementary Classes

Accessible Categories

Definitions
Galois Types
Partial Spectra

An Abstract Elementary Class (AEC) is a nonempty class K of
structures in a given signature, closed under isomorphism,
equipped with a family of strong embeddings M, that satisfies:

I K, with the maps in M, forms a subcategory of Str(L(K))

I which is closed under directed colimits (i.e. direct limits).

I Coherence: If M0≺KM2, M0 ⊆ M1≺KM2, then M0≺KM1
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Having discarded syntax, we consider a new notion of type: Galois
types. In AECs with sufficient amalgamation, there is a monster
model C in K, and the Galois types have a simple description:

Definition
For a ∈ C, M ∈ K, the Galois type of a over M is defined to be the
orbit of a under automorphisms of C that fix M. The set of all
types over M is denoted by ga-S(M).

In general, they will not have a nice syntactic description.

Definition
We say K is λ-Galois-stable if |ga-S(M)| = λ for all M ∈ Kλ.
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Some familiar notions translate:

Definition
A model M ∈ K is λ-Galois-saturated if it realizes all types over
submodels of size less than λ, i.e. the orbit in C corresponding to
any such type meets M.

Some notions are less familiar:

Definition
An AEC K is χ-tame if, for any distinct Galois types p and q over
a model M ∈ K, there is N≺KM with |N| ≤ χ such that
p � N 6= q � N.
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Categoricity: Story fragmentary, results only for tame classes.

Theorem (Grossberg-VanDieren)

If K is categorical in λ and λ+, it is categorical in λ++.

Theorem (G-V)

If K is categorical in λ+ > H(K), it is categorical in all µ > H(K).

These results involve resorting, however briefly, to syntactic
considerations.

Question: Can a purely category-theoretic perspective reveal
anything new about the structure of categorical AECs?
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Stability: For tame AECs, some progress (G-V, Baldwin-Kueker-V,
L). If K is only weakly tame, very little:

Theorem (B-K-V)

If K is λ-stable, it is stable in λ+n for all n < ω.

Theorem (L)

If K is λ-t.t., and κ is such that cf(κ) > λ and each M of size κ
has a saturated extension also of size κ, then K is κ-stable.

Can we guarantee the existence of saturated extensions without
making the standard model-theoretic assumption: |ga-S(M)| < κ
for all M ∈ K<κ?

Yes: weak κ-stability, a purely category-theoretic (and weaker)
notion, will suffice.
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Roughly speaking, an accessible category is one that is generated
by colimits of a set of small objects. To be precise:

Definition
An object N in a category C is λ-presentable if the functor
HomC(N,−) preserves λ-directed colimits.

Definition
A category C is λ-accessible if

I it has at most a set of λ-presentables

I it is closed under λ-directed colimits

I every object is a λ-directed colimit of λ-presentables
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The Löwenheim-Skolem Property ensures that models in an AEC
are generated as directed unions of their submodels of size LS(K).

Lemma
If K an AEC, then M ∈ K is λ+-presentable iff |M| ≤ λ

Theorem (L)

As a category, an AEC K is µ-accessible for all regular µ > LS(K),
and the µ-presentable objects are precisely the models of size less
than µ. Moreover, K is closed under directed colimits.

Added structure: accessible in all regular µ > LS(K), hence
LS − accessible in the terminology of B-R. Also, closed under
arbitrary directed colimits.

Michael LiebermanMasaryk University Categories in abstract model theory



Model-theoretic Context
Abstract Elementary Classes

Accessible Categories

Definitions
Stability
A Structure Theorem

Definition
A morphism f : M → N in a category C is said to be λ-pure (λ
regular) if for any commutative square

M
f−→ N

u ↑ ↑ v

C
g−→ D

in which C and D are λ-presentable, there is a morphism
h : D → M such that h ◦ g = u.

In an AEC K, M ↪→K N is λ-pure iff M is λ-Galois-saturated
relative to N. An inclusion M ↪→K C is λ-pure iff M is
λ-Galois-saturated.
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Definition
A category C is weakly κ-stable if for every κ+-presentable M and
morphism f : M → N, f factors as

M −→ M ′ −→ N

where M ′ is κ+-presentable and the map M ′ → N is κ-pure.

If an AEC K is weakly κ-stable, then for any M ∈ Kκ, the inclusion
M ↪→K C factors through a κ+-presentable object M ′ (i.e. a model
M ′ ∈ Kκ) such that M ′ ↪→K C is λ-pure, whence M ′ is saturated.

That is, every M ∈ Kκ has a saturated extension M ′ ∈ Kκ.

Michael LiebermanMasaryk University Categories in abstract model theory



Model-theoretic Context
Abstract Elementary Classes

Accessible Categories

Definitions
Stability
A Structure Theorem

The partial spectrum result for weakly tame AECs becomes:

Proposition

If K is λ-t.t., and weakly κ-stable with cf(κ) > λ, K is κ-stable.

As it happens, any accessible category—hence any AEC—is weakly
stable in many cardinalities:

Theorem (R)

Let C be a λ-accessible category, and µ a regular cardinal such
that λ E µ and |Presλ(C)mor | < µ. Then C is weakly µ<µ-stable.

Taken together, these yield new partial spectrum results for weakly
tame AECs. . .
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Questions

Does λ-Galois-stability imply weak λ-stability?

I True in case K is an elementary class...

Can one (meaningfully) extend Galois types and the associated
machinery to more general category-theoretic frameworks:

I concrete accessible categories with directed colimits,

I accessible categories with directed colimits,

I accessible categories,

and so on?
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Suppose K is λ-categorical, C is the unique structure of size λ,
and M is its monoid of endomorphisms.

Theorem (R,L)

If K is λ-categorical, the sub-AEC K≥λ consisting of models of size
at least λ is equivalent to (Mop, λ+)-Set, the full subcategory of
Mop-Set consisting of λ+-directed colimits of M.

The equivalence is induced by the composition

K≥λ
y−→ Set(K≥λ)op r−→ SetM

op −→ Mop-Set

where y is the Yoneda embedding, and the second map is
restriction.
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The assignment is:

N ∈ K≥λ 7→ HomK(C ,N)

where M = HomK(C ,C ) acts by precomposition.

That this gives the desired equivalence is an exercise in definitions.

This amounts to an astonishing transformation of a very abstract
entity—an AEC—into a category of relatively simple algebraic
objects.
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Questions

Does this do anything to clarify the status of the Categoricity
Conjecture for AECs?

Do analogues of the Categoricity Conjecture hold for

I concrete accessible categories with directed colimits,

I accessible categories with directed colimits,

I accessible categories,

and so on?
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Questions

Does this do anything to clarify the status of the Categoricity
Conjecture for AECs?

Do analogues of the Categoricity Conjecture hold for

I concrete accessible categories with directed colimits,

I accessible categories with directed colimits,

I accessible categories,

and so on? Seems unlikely, but counterexamples are very hard to
come by...
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Further Reading

Accessible Categories and AECs:

I Jǐŕı Adámek and Jǐŕı Rosický. Locally presentable and accessible
categories. No. 189 in London Math. Soc. Lecture Notes, 1994.

I Beke, Tibor and Jǐŕı Rosický. Abstract elementary classes and
accessible categories. APAL, 163(12): 2008-2017, 2012.

I Kirby, Jonathan. Abstract elementary categories. August 2008. See
http://people.maths.ox.ac.uk/~kirby/pdf/aecats.pdf.

I Lieberman, Michael. Category-theoretic aspects of AECs. APAL,
162(11): 903-915, 2011.

I Makkai, Michael and Robert Paré. Accessible categories: the
foundations of categorical model theory, Vol. 104 of Contemporary
Mathematics. AMS, 1989.

I Rosický, Jǐŕı. Accessible categories, saturation and categoricity. JSL,
62:891–901, 1997.
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Further Reading II

AEC Context:

I Baldwin, John. Categoricity. No. 50 in University Lecture Series. AMS, 2009.

I Baldwin, John, David Kueker, and Monica VanDieren. Upward stability
transfer for tame abstract elementary classes. Notre Dame Journal of Formal
Logic, 47(2):291–298, 2006.

I Grossberg, Rami and Monica VanDieren. Galois-stability in tame abstract
elementary classes. Journal of Math. Logic, 6(1):25–49, 2006.

I Grossberg, Rami and Monica VanDieren. Shelah’s categoricity conjecture from
a successor for tame abstract elementary classes. JSL, 71(2):553–568, 2006.

I Lieberman, Michael. Rank functions and partial stability spectra for AECs. To
appear in Notre Dame Journal of Formal Logic.

I Shelah, Saharon. Classification theory for abstract elementary classes, Vols 1
and 2. Math. Logic and Foundations, No. 20 (College Publishing, 2009).
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