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Abstract. We construct a cofibrantly generated Quillen model structure on

the category of small topological categories CatTop. It is Quillen equivalent to
the Joyal model structure of (∞, 1)-categories and the Bergner model structure

on the category of simplicial categories CatsSet. We also give a new complete

description for the mapping space of the model category CatTop.

Introduction

In t section 1, we describe in details the Quillen model structure on the category
of small topological categories CatTop [1] and we give the strategy of proof without
technical details, which will be carefully carried out in the next sections. As the
experience shows, it is better to have equivalent model structure and to be able to
jump from one to another. For instance, the Joyal model structure on simplicial sets
for quasi-categories is very convenient, it is a symmetric monoidal combinatorial
model category and the pushouts are easy to compute. But we loose our intuition
if we want to apply some categorical construction such as limits and colimits for
a given quasi-category. An other interesting Quillen equivalent model structure
was constructed by Bergner [2] for the category of small simplicial categories. This
category is well behaved, but it is not a symmetric monoidal model category and
the objects are not always fibrant. However its homotopy category is a symmetric
monoidal closed category [11]. That is why we propose an other alternative which
is the category of topological small categories. It is the worse category from the
categorical point of view because it is not combinatorial anymore but all objects
are fibrant. This is a key point to construct a model structure on the category of
topological categories with some extra algebraic structure (for example symmetric
monoidal enriched categories).
One of the major difficulty to prove the main theorem is to develop the necessary
technics to compute certain pushouts in the category CatTop based on the work
of Dwyer and Kan [4] and Lurie [9]. Roughly speaking, sections 2, 3 and 4 are the
technical heart of the complete proof of the main theorem. Section 2 is devoted to
an explicit construction of free topological categories.
In section 3, we introduce a notion of good realization of simplicial object in the
category of topological categories with a fixed set O of objects. The main problem
is due to the fact that the objects in Top are not cofibrant in general.
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Section 4 is the technical part of the article. We introduce the notion of free res-
olution of topological categories defined initially in [4] and we compute explicitly
some push-outs in CatTop.
Section 5 and 6 is a relation between the model categories of the Joyal model
structure, Bergner model structure, the new model structure on CatTop and the
standard model structure on simplicial sets. We study precisely the relation of dif-
ferent notions of ∞-groupoids in each model and establish relation between them
in order to prepare for the description of the mapping space of the model categories
CatTop and CatsSet.
In section 7, we give a model for the mapping spaces of the category CatTop

equivalent to those described by Toën in [11] but equivalent. As consequence we
obtain very interesting and nontrivial equivalences between mapping spaces. Fi-
nally, section 8 is about a functorial construction of Dwyer-Kan localization with
nice properties. The article is self contained.

Theorem 1.3 The category of small topological categories is a cofibratly gener-
ated model category where the weak equivalences are the Dwyer-Kan equivalences.
It is Quillen equivalent to the Bergner model structure on the category of small
simplicial categories.

The categories CatTop and CatsSet are not symmetric monoidal model cate-
gories but following the ideas of the article [11] we have as a direct consequence
that the homotopy categories HoCatTop and HoCatsSet are symmetric monoidal
closed categories. The tensor product is denoted by ⊗L and the internal hom by
RHOM. The enriched category RHOM(C,D) is the full sub-category of right
quasi representable Cop ⊗L D-Modules.
Theorem 7.3 Let D be a topological category or fibrant simplicial category and C
a cofibrant object in CatV then:

mapCatV(C,D) ∼ N• wRHOM(C,D) ∼ Ñ•GRHOM(C,D)

where GRHOM(C,D) the∞-groupoid associated to RHOM(C,D) , wRHOM(C,D)
is the discrete subcategory of weak equivalences, N• the standard nerve of discrete
categories, Ñ• is the coherent nerve and V = sSet or Top. More specially

Ñ•GD ∼ N•wRHOM(∗,D) ∼ Ñ•GRHOM(∗,D).

We also prove the following proposition which is, in some sense, a justification
for the homotopy invariance of algebraic K-theory of a suitable model categories of
modules. This theorem which also connects the discrete case to the enriched one.
Corollary 7.4 Suppose that D = RHOM(∗,C) then

Ñ•GD ∼ N• wD.

Acknowledgment: The article is a part of my PhD thesis at Swiss Federal
Institute of Technology, Lausanne (EPFL). I’m grateful to my advisor Professor
Kathryn Hess who made a big effort to read the manuscript in details with a helpful
advising and corrections. I’m also grateful to Jérôme Scherer for his remarks and
suggestions.
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1. Category of small topological categories.

In this article, the category of Hausdorf compactly generated topological spaces
will be denoted by Top. it is a simplicial symmetric monoidal closed model cate-
gory.
Before stating the main theorem of this section we will introduce some notations
and definitions.

Remark 1.1. A topological category is a category enriched over Top. The category
of all (small) topological categories is denoted by CatTop. The morphisms in
CatTop are the enriched functors. It is a complete and cocomplete category.
The category V will be either the category sSet or Top.

Definition 1.2. Let U : V→ CatV be the functor defined as follows:
For each object S ∈ V, U(S) is the enriched category with two objects x and y
such that MapU(S)(x, y) = S.

Theorem 1.3. [1] The category CatTop admits a cofibranty generated model struc-
ture defined as follows.
The weak equivalences F : C→ D satisfy the following conditions.

WT1 : The morphism MapC(a, b) →MapD(Fa,Fb) is a weak equivalence in the
category Top.

WT2 : The induced morphism π0F : π0C → π0D is a categorical equivalence in
Cat.

The fibrations are the morphisms F : C→ D which satisfy :

FT1 : The morphism MapC(a, b)→MapD(Fa,Fb) is a fibration in Top.
FT2 : For each objects a and b in C, and a weak equivalence

e : F(a)→ b in D (i.e., an isomorphism in π0D), there exists an object a1

in C and a weak equivalence d : a→ a1 in C such that Fd = e.

Moreover, the set I of generating cofibrations is given by :

CT1 : |U∂∆n| → |U∆n|, for n ≥ 0.
CT1 : ∅ → {x}, where ∅ is the empty topological category and {x} is the category

with one object and one morphism.

The set J of generating acyclic cofibrations is given by:

ACT1 : |UΛni | → |U∆n|, for 0 ≤ n and 0 ≤ i ≤ n.
ACT2 : {x} → |H| where {H} is defined in [2].

Moreover, the adjunction:

CatsSet

|−| //
CatTop

sing
oo

is a Quillen equivalence.

Remark 1.4. Obviously, all objects in CatTop are fibrant.

We start with a useful lemma which gives us conditions to transfer a model
structure by adjunction.



4 AMRANI ILIAS

Lemma 1.5. [[12], proposition 3.4.1] Consider an adjunction

M
G //

C
F

oo

where M is a cofibrantly generated model category, with generating cofibrations I
and generating trivial cofibrations J. We pose

• W the class of morphisms in C such the image by F is a weak equivalence
in M.
• F the class of morphisms in C such the image by F is a fibration in M.

We suppose that the following conditions are verified:
(1) The domains of G(i) are small with respect to G(I) for all i ∈ I and the

domains of G(j) are small with respect to G(J) for all j ∈ J.
(2) The functor F commutes with directed colimits i.e.,

F colim(λ→ C) = colimF (λ→ C).

(3) Every transfinite composition of weak equivalences in M is a weak equiva-
lence.

(4) The pushout of G(j) by any morphism f in C is in W.

Then C forms a model category with weak equivalences (resp. fibrations) W (resp.
F). Moreover, it is cofibrantly generated with generating cofibrations G(I) and gen-
erating trivial cofibrations G(J).

We prove the main theorem using 1.5.

Lemma 1.6. The pushout of |UΛni | → |U∆n| along any morphism F : |UΛni | → D
is a weak equivalence.

Proof. See 4.4 �

Lemma 1.7. The pushout of {x} → |H| along {x} → C is a weak equivalence for
all C ∈ CatTop.

Proof. Let O be the set of objects of C without the object {x} touched by the
morphism {x} → C. We note by x, y objects of |H|. The goal is to prove that h
defined in the following pushout is a weak equivalence

{x} //

��

C

h

��
|H| // D

Observe that there is an other double pushout

{x} t O //

��

C

i

��
{x, y} t O //

��

C t {y}

h
′

��
|H| t O // D.
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Which is a consequence of:

|H| t O
⊔

Ot{x,y}

C t {y} = |H|
⊔
{x,y}

C t {y} = |H|
⊔
{x}

C = D.

The morphism h
′

is a natural extension of h, i.e., h
′ ◦ i = h.

On the other hand, the counity c : |singC| → C is a weak equivalence. Consider
the following pushout in CatsSet:

{x} t O //

��

singC

i

��
{x, y} t O //

��

sing(C) t {y}

f
′

��
H tO // D

′
.

Since CatsSet is a model category, we have that f = f
′ ◦ i is a weak equivalence.

Consequently |f | is a weak equivalence in CatTop .
As before f

′
is an extension of f .

Using the fact that the functor | − | commutes with colimits, the diagram of the
following double pushout permit to conclude:

|singC| ∼ //

i

��

C

i

��
{x, y} t O //

��

|sing(C t {y})|

|f
′
|

��

c // C t {y}

h
′

��
|H| t O // |D′ | m

// D.

In Fact,

m : D = (|H| t O) ? |sing(C t {y})| → (|H| t O) ? (C t {y}) = D
′

is a weak equivalence by 4.7. We have seen that |f | is a weak equivalence, so by
the property 2 out of 3 we conclude that h is a weak equivalence. �

Lemma 1.8. The functor sing commutes with directed colimits.

Proof. Let λ be an ordinal and let

C = colimλCλ,

a directed colimit in CatTop. If a
′

and b
′

are two objects in C, then by defini-
tion, there exists an index t such that they are represented by a, b ∈ Ct, and
MapC(a

′
, b
′
) is a colimit of the following diagram:

MapCa,b
t

(a, b)→ . . .MapCs
(as, bs)→MapCs+1

(as+1, bs+1)→ . . .

where Ca,b
t is a full subcategory of Ct with only two objects a, b. Since the

functor Ob : Cat → Set and the functor sing : Top → sSet commute with
directed colimits, we have that sing : CatTop → CatsSet commutes with directed
colimits. �
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Lemma 1.9. The objects |UΛni |, |U∆n| and |H| are small in CatTop

Proof. It is a consequence of the fact that UΛni , U∆n , H are small in CatsSet and
sing : CatTop → CatsSet commutes with directed colimits. �

Lemma 1.10. The transfinite composition of weak equivalences in CatsSet is a
weak equivalences.

Proof. It is a consequence that the transfinite composition of weak equivalences in
sSet and Cat is a weak equivalence. Note that π0 : CatsSet → Cat commutes
with colimits because it admits a right adjoint: the functor which correspond to
each topological enriched category C an trivially enriched category i.e., we forget
the topology of C. �

Corollary 1.11. The category CatTop is a cofibrantly generated model category
Quillen equivalent to CatsSet.

Proof of the main theorem1.3. It follows from lemma 1.5. The point (1) is
proven by 1.9. The point (2) is proven by 1.8. The point (3) is proven by 1.10 and
finally the point (4) is given by 1.6, 1.7. The Quillen equivalence between CatTop

and CatsSet is a direct consequence of the Quillen equivalence between Top and
sSet.

�

2. Free Enriched Categories

In this section, we define an adjunction between CatTop and the categories
of enriched graphs on Top. This adjunction is constructed in the particular case
where the set of objects is fixed. We will denote O−CatTop the category of small
enriched categories over Top with fixed set of objects O, the morphisms are those
functors which are identities on objects. By the same way, we define the category
O −GraphTop of small graphs enriched over Top with a fixed set of vertices O.
There exists an adjunction between O−CatTop and O−GraphTop given by the
forgetful functor and the free functor. First of all, we define the free functor between
graphs and categories. First we study the case where O is a set with one element.

Lemma 2.1. There exists a right adjoint to the forgetful functor U : Mon→ Top
where Mon is the category of topological monoids.

Proof. Let X be a space. We define

L(X) = ∗ tX t (X ×X) t (X ×X ×X) t . . . ;

it is a a well defined functor from Top to topological monoids.
In fact, it is the desired functor. Let M be a topological monoid, a morphism

of monoids L(X) → M is given by a morphism of non pointed topological spaces
X → U(M). This morphism extends in a unique way to a morphism of monoids if
we consider the following morphisms in Top:

X ×X · · · ×X →M ×M · · · ×M →M.

We conclude that: homTop(X,U(M)) = homMon(L(X),M). �

For a generalization to an adjunction between O−CatTop and O−GraphTop,
we do as follow: we pose O the trivial category with set of object O. For each
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graph Γ in O−GraphTop we define the set of the following categories indexed by
a pair of element a, b ∈ O

Γa,b(c, d) =


Γ(c, d) if c = a 6= b = d
L(Γ(c, d)) if a = c = b = d
∅ if c 6= d and a 6= c ∧ b 6= d
∗ = id else

Let Γ be a graph in O−GraphTop. we define the free category induced by the
graph as a free product in the category O − CatTop of all categories of the form
Γa,b, more precisely

L(Γ) = ?(a,b)∈O×OΓa,b.

By the free product, we mean the following colimit in CatTop:

colim(a,b)∈O×OΓa,b.

Lemma 2.2. We have a generalized adjunction:

O −GraphTop

L // O −CatTop
U

oo

Proof. It follows directly from the construction of the extended (free) functor L. �

3. Realization

Let M be a simplicial model category (i.e., tensored and cotensored in a suitable
way [6]). The category [∆op,M] is a model category with Reedy model structure
(cf [6]) where the weak equivalences are defined degree wise.

Definition 3.1. The realization functor

| − | : [∆op,M]→M

is defined as follows:

⊔
φ:[n]→[m]Mm ⊗∆n

d0 //
d1

//
⊔

[n]Mn ⊗∆n // |M•|

where d0 = φ∗ ⊗ id and d1 = id⊗ φ. It is a coequalizer.

Remark 3.2. Since M is a simplicial category, the functor | − | admits a right
adjoint:

(−)∆ : M→ [∆op,M] : M 7→M∆n

.

Lemma 3.3. [[6],VII, proposition 3.6] Let M be a simplicial model category and
[∆op,M] equipped with the Reedy model structure. Then the realization functor

| − | : [∆op,M]→M

is a left Quillen functor.

Now, we specialize to M = Top. In this particular case, [∆op,Top] is a monoidal
category (the monoidal structure is defined degree wise form the monoidal structure
of Top). So, the realization functor | − | : [∆op,Top] → Top commutes with the
monoidal product (cf [5], chapter X, proposition 1.3).
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Corollary 3.4. The realization functor | − | : [∆op,Top]→ Top preserves homo-
topy equivalences.

In practice, lemma 3.3 is difficult to use. It is quite difficult to show that an
object in [∆op,M] is Reedy cofibrant. In appendix A of [10], Segal gives us an
alternative solution in the particular case of [∆op,Top].

Lemma 3.5. There exists a functor || − || : [∆op,Top]→ Top, called good realiza-
tion with the following properties:

(1) Let f• : X• → Y• be a morphism in [∆op,Top] such that if fn : Xn → Yn
is a weak equivalence for all n ∈ N, then ||f•|| : ||X•|| → ||Y•|| is a weak
equivalence in Top;

(2) There exists a natural transformation N : || − || → | − |, with the property
that for all good simplicial topological space X•, the natural morphism:

NX• : ||X•|| → |X•|

is a weak equivalence in Top;
(3) The natural morphism ||X•×Y•|| → ||X•|| × ||Y•|| is a weak equivalence in

Top.

For the details we refer to [10].

Lemma 3.6. [10] There exists an endofunctor τ : [∆op,Top]→ [∆op,Top] and a
natural transformation Q : τ → id with the following properties:

(1) τX• is a good simplicial topological space for all X• ∈ [∆op,Top];
(2) The natural morphism Qn : τn(X•) → Xn is a weak equivalence for all

n ∈ N;
(3) The natural morphism ||X•|| → |τ(X•)| is a weak equivalence;
(4) Finally , we have τ0(X•) = X0.

Corollary 3.7. Let f• : X• → Y• be a morphism in [∆op,Top], such that fn is a
weak equivalence for all n, then

|τ(f•)| : |τ(X•)| → |τ(Y•)|

is a weak equivalence of topological spaces.

Proof. It is a direct consequence from 3.5 and 3.6. �

We can see the functor τ as kind of cofibrant replacement. It is useful to know
how to describe the functor τ .

Definition 3.8. [[10], appendix A] Let A• be a simplicial topological space and σ
a subset of {1, . . . , n}. We pose:

(1) An,i = siAn.
(2) An,σ = ∩i∈σAn,i.
(3) τn(A•) is a union of all subsets [0, 1]σ ×An,σ of [0, 1]n ×An.

The morphism τ(A•)→ A• collapses [0, 1]σ and injects An,σ in An.

Lemma 3.9. The functor τ sends homotopy equivalences to homotopy equivalences.
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Proof. Let h : X•× [0, 1]→ Y• be a homotopy between t and s. By definition of τ ,
we have

τn(X• × [0, 1]) =
⋃

σ∈{1,...n}

[0, 1]σ × (X• × [0, 1])n,σ

=
⋃

σ∈{1,...n}

([0, 1]σ ×Xn,σ × [0, 1])

= (
⋃

σ∈{1,...n}

[0, 1]σ ×Xn,σ)× [0, 1]

= τn(X•)× [0, 1].

Consequently τ(h) : τ(X•)×[0, 1]→ τ(Y•) is a homotopy between τ(t) and τ(s). �

Definition 3.10. A strong section f : X → Y is a continuous map i : Y → X
such that f ◦ i = idY and such that there exists a homotopy between i ◦ f and idX
which fixe Y .

Corollary 3.11. The functor τ preserve strong sections.

Proof. It is a consequence of lemma 3.9 and the fact that τ is a functor so it
preserves the identities. �

Corollary 3.12. If X is a constant simplicial topological space, then QX : τ(X)→
X admits a strong section.

Proof. The section i : X → τ(X) is induced by the identity on X. To show that it
is a strong section, it is sufficient to see that τn(X) = [0, 1]n ×X by definition. �

4. Push-outs in CatV

We define and compute some (simple) pushouts in the category of small enriched
categories CatV. In our example V is the category sSet or Top. For more details
see ([9], A.3.2).
Let f : S → T be a morphism in V and C an enriched category on V. We want to
describe explicitly the following pushout diagram:

US h //

Uf
��

C

��
UT // D

It is enough clear that the objects of C and D are the same. The difficult par is
to define MapD.
Let w, z ∈ C and define the following sequence of objets in V:

M0
C = MapC(w, z).

M1
C = MapC(y, z)× T ×MapC(w, x).

M2
C = MapC(y, z)× T ×MapC(y, x)× T ×MapC(w, x).
. . .

More generally, an object of Mk
C is given by a finite sequence of the form

(σ0, τ1, σ1, τ2, . . . , τk, σk)
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where

σ0 ∈MapC(y, z), σk ∈MapC(w, x), σi ∈Map(y, x)

for 0 < i < k, and τi ∈ T for 0 < i ≤ k.

We define MapD(w, z) as a quotient of
⊔
kM

k
C relative to the following relations:

(σ0, τ1, . . . , σk) ∼ (σ0, τ1, . . . , τj−1, σj−1 ◦ h(τj) ◦ σj , τj+1, . . . , σk),

when τj is an element of S ⊂ T.
The category D is equipped with the following associative composition:

(σ0, τ1, . . . , σk) ◦ (σ
′

0, τ
′

1, . . . , , σ
′

l) = (σ0, τ1, . . . , , τk, σk ◦ σ
′

0, τ
1
1 , . . . , σ

′

l).

Observe that there is a natural filtration on MapD(w, z):

MapC(w, z) = MapD(w, z)0 ⊂MapD(w, z)1 ⊂ . . .

where MapD(w, z)k is defined as image of
⊔

0≤i≤kM
i
C in MapD(w, z) and⋃

k

MapD(w, z)k = MapD(w, z).

The most important fact is that MapD(w, z)k ⊂MapD(w, z)k+1 is constructed as
pushout of the inclusion: Nk+1

C ⊂ Mk+1
C , where Nk+1

C is a sub-object of Mk+1
C of

(2m+ 1)-tuples (σ0, τ1, ..., σm) such that τi ∈ S for at less one i.

4.1. Monads. The main goal of this section is to generalize the section 2 of the
article [4] to the categories enriched over Top.
Every adjunction define a monad and a comonad. We are interested on the partic-
ular adjunction 2.2

O −GraphTop

L // O −CatTop
U

oo

We have a monad T = UL and a comonad F = LU . The multiplication on T
is denoted by µ : TT → T and the unity η : id → T , the comultiplication by
ψ : F → FF and finally the counity by φ : F → id. The T−algebras are exactly
those graphs which have a structure of a category (composition).

Notation 4.1. We denote by O − sCatTop the category of presheaves [∆op,O −
CatTop] and
O − sGraphTop the category of prescheaves [∆op,O −GraphTop].
If we note [∆op,Top] by sTop then we have

O − sCatTop = O −CatsTop,

and

O − sGraphTop = O −GraphsTop.
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4.1.1. Simplicial resolution. Let C be an object of O −CatTop,
We define the iterated composition of F by :

F k = F ◦ F · · · ◦ F︸ ︷︷ ︸
k

.

The comonad F gives us a simplicial resolution C (cf [4]) defined as follow:

FkC = F k+1C,

With faces and degeneracies:

FkC
di=F

iφFk−i

// Fk−1C

FkC
si=F

iψFk−i

// Fk+1C

The category of compactly generated spaces Top is a simplicial model category
(tensored and cotensored over sSet):

(1) In O− sCatTop we have the morphism f : F•C→ C, where C is sow as a
constant object in O − sCatTop and t fk = φk+1.

(2) The morphism f admits a section i : C→ F•C in the category GraphsTop.
The section i is induced by the unit of the monad T i.e., ηUC : UC →
ULUC;

(3) The adjunction

[∆op,Top]
|−| //

Top,
(−)∆

oo

induces the following adjunction

O −CatsTop

|−| // O −CatTop,
(−)∆

oo

since the realization functor is monoidal.
(4) The realization of the morphism f in O− sCatTop induces a weak equiva-

lence i.e., |f | : Map|F•C|(a, b)→MapC(a, b) is a weak equivalence in Top
for all a, b ∈ O.

Remark 4.2. The realization functor | − | does not ”see” the category structure,
but only the graph structure.

More generally, for all C, D in O −CatTop the following morphism:

F•(C) ?D // C ?D

admits a strong section C?D→ F•C?D in the category O− sGraphTop. In fact,
the categoryO−GraphTop is monoidal (nonsymmetric) with monoidal product×O
which is a generalization of ([8],II, 7). A topologically enriched category is a monoid
with respect to this monoidal product. The free product C ? D is constructed in
O −GraphTop as

Oc tO C
′
tO D

′
tO (C

′
×O C

′
) tO (D

′
×O D

′
) tO (C

′
×O D

′
) tO (D

′
×O C

′
) . . .
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where C
′

(resp. D
′
) is a correspondent graph of C (resp. D) without identities

and Oc is the trivial category obtained from the set O. So C ?D → F•(C) ?D is
induced by the section i : C→ F•C and id : D→ D. consequently the morphism

MapC?D(a, b)→Map|Fi(C)?D|(a, b) = Map|Fi(C)|?D(a, b)

is a weak equivalence in Top for all objects a, b ∈ O.

Lemma 4.3. Let i : X → Y an inclusion and a weak equivalence of topological
spaces and i(X) closed in Y such that there exists a homotopy H : Y × [0, 1] → Y
which verify the following conditions:

(1) H(−, 0) = idY
(2) H(i(x), t) = i(x) for all x ∈ X.
(3) H(−, 1) = s with s ◦ i = idX .

then the morphism g of the pushout :

X
ψ //

i

��

Z

g

��
Y

α //

s

HH

D

is a weak equivalence.

Proof. We remind that D = Y ∪X Z. To simplify notation we will denote the image
of y ∈ Y in D by y, respectively z for the image of z ∈ Z in D .

Since i admits a retraction, g admits also a retraction noted by s
′

and induced
by s. It means that we have an inclusion of Z in D via g because of s

′ ◦ g = idZ .
In fact, s

′
: D → Z is defined as follow:

(1) s
′
(z) = z for z ∈ Z.

(2) s
′
(y) = s(y) for y ∈ Y.

This new section s
′

is well defined by s
′
(ψ(x)) = ψ(x) and s

′
(i(x)) = i(x) but in

D we have i(x) = ψ(x) for all x ∈ X. We resume the situation in the following
diagram

X
ψ //

� _

i

��

Z� _

g

�� id

��

Y
α //

s

HH

ψ◦s

,,

Y ∪X Z

s
′

##GGGGGGGGG

Z

We construct the homotopy H
′

: D × [0, 1]→ D as follow:

(1) H
′
(−, 0) = idD.

(2) H
′
(z, t) = z if z is in Z .

(3) H
′
(y, t) = H(y, t) for all y in Y .

This homotopy is well defined. In fact, it is enough to prove that the gluing
operation is well defined. We have ψ(x) = i(x) in D, then H

′
(i(x), t) = H(i(x), t) =

i(x) by definition, on the other hand H
′
(ψ(x), t) = ψ(x). Since i(X) is closed in
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Y , then i(X) is closed in D. We conclude that H
′

is well defined. Moreover,
H
′
(y, 0) = H(y, 0) = y and so H

′
(−, 0) is the identity.

By simple computation of H
′
(−, 1) : D → D we have that H

′
(z, 1) = z for all

z ∈ Z and H
′
(y, 1) = H(y, 1) = s(y) for all y ∈ Y . So, H

′
(−, 1) = s′. That means

the morphism s
′

: D → Z ⊂ D is a weak equivalence since it is homotopic to the
identity. Consequently g is also a homotopy equivalence because s

′ ◦ g = id.
�

Lemma 4.4. With the precedent notation of section 4, if we pose f : S = |Λni | →
T = |∆n|, then, MapC(w, z) ⊂MapD(w, z) is a weak equivalence ∀w, z ∈ C.

Proof. We remind here that V = Top. Since all objects in Top are fibrant, f
admits a section s. On the other hand, the inclusion Nk+1

C ⊂ Mk+1
C is a weak

equivalence and admits also a section. We will do the demonstration for the case
k = 2. We use the following notations:

A0 = MapC(y, z)× S ×MapC(y, x)× S ×MapC(w, x)(4.1)
A1 = MapC(y, z)× S ×MapC(y, x)× T ×MapC(w, x)(4.2)
A2 = MapC(y, z)× T ×MapC(y, x)× S ×MapC(w, x).(4.3)

The evident inclusions are weak equivalences which admit sections induced by s
A0 → Ai, i = 1, 2.

We define the complement of N2
C, which consists on tuples (a, s1, b, s2, c) in

MapC(y, z)×T ×MapC(y, x)×T ×MapC(w, x) such that s1, s2 /∈ S. We will do
our argument in low dimension n = 1, the rest is similar. The space T×S∪S×SS×T
is a gluing of two intervals [0, 1] at the point 0 and T × T is simply [0, 1]× [0, 1]. If
we pose f : X = T × S ∪S×S S × T → T × T = Y , we are exactly in the situation
of the lemma 4.3 i.e., there exists a homotopy between X and Y which is identity
map on X. If we rewrite N2

C by

N2
C = A1

⋃
A0

A2 = X ×MapC(y, z)×MapC(y, x)×MapC(w, x),

and M2
C by

M2
C = Y ×MapC(y, z)×MapC(y, x)×MapC(w, x),

The induced morphism N2
C → M2

C verify the condition of the lemma 4.3. Con-
sequently, the pushout of N2

C ⊂ M2
C along N2

C → MapD(w, z)1 is also a weak
equivalence. It means that the inclusion MapD(w, z)1 ⊂ MapD(w, z)2 is a weak
equivalence. By the same argument we prove the statement for all k and use the
fact that a transfinite composition of weak equivalences is a weak equivalence. So

MapC(w, z) · · · ⊂MapD(w, z)k ⊂MapD(w, z)k+1 · · · ⊂MapD(w, z)

is a weak equivalence.
�

Lemma 4.5. Let C→ D a weak equivalence in O −CatTop and let Γ a graph in
O −GraphTop, the induced morphism :

L(Γ) ?C→ L(Γ) ?D

is a weak equivalence in the category O −CatTop.
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Proof. It is enough to prove that C
′

= L(Γ)a,b ? C → L(Γ)a,b ? D = D
′

is an
equivalence for all (a, b) ∈ O × O. If a 6= b, it is a direct consequence of the
lemma 4.4, where we replace S by ∅ and T by X. So MapC′ (w, z) =

⊔
kM

k
C

and respectively MapD′ (w, z) =
⊔
kM

k
D. But Mk

C is equivalent to Mk
D since C is

equivalent to D. We conclude that MapC′ (w, z) is equivalent to MapD′ (w, z).
If a = b, we note the edges from a to a of the graph Γ by X. Then we use the

precedent case if we remark that C
′

= L(Γ)a,b ?C is simply the following pushout:

U(∅)
f //

��

C

g

��
U(X) α // C

′

The morphism f send the two objects of U(∅) to a ∈ C, so, by the lemma 4.4
we have that L(Γ)a,a ? C → L(Γ)a,a ? D is a weak equivalence. Consequently
L(Γ) ? C → L(Γ) ? D is a weak equivalence by a possibly transfinite composition
of weak equivalences. �

Corollary 4.6. Let M in O − CatTop, then FiM ? C → FiM ? D is a weak
equivalence in O −CatTop for all 0 ≤ i.

Proof. It is enough to see that F = LU and applied the lemma 4.5 by putting
Γ = UM. �

Lemma 4.7. Let C, D and M in O −CatTop , and C→ D a weak equivalence.
Then

M ?C→M ?D
is a weak equivalence.

Proof. We have seen by 4.6 that

hi : Fi(M) ?C→ Fi(M) ?D

is a weak equivalence for all 0 ≤ i. Consider the following commutative diagram in
O −GraphsTop:

τ(F•(M) ?C)
τ(h•) //

τ(t)

��

f•

''PPPPPPPPPPPP
τ(F•(M) ?D)

g•

((PPPPPPPPPPPP

τ(s)
��

F•(M) ?C
h• //

t
��

F•(M) ?D

s

��

τ(M ?C)
τ(h) //

f

((PPPPPPPPPPPP
τ(M ?D)

g

((QQQQQQQQQQQQ

M ?C
h // M ?D

The morphism t and s are homotopy equivalences. By 3.4, the morphisms |t|
and |s| are also homotopy equivalences (of underling graphs).
The morphisms τ(t) and τ(s) are homotopy equivalences by 3.11. And by 3.4, the
morphisms |τ(t)| and |τ(s)| are homotopy equivalences.
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The morphism |τ(h•)| is a weak equivalence by 3.7.
By the property 2 out of 3, |τ(h)| is a weak equivalence.
The morphisms f and g are homotopy equivalences by 3.12. So |f | and |g| are also
homotopy equivalences by 3.4.
We conclude by the property ”2 out of 3” that |h| is a weak equivalence and so h
is a weak equivalence.

�

5. ∞-categories (quasi-categories)

In the mathematical literature, there are many models for ∞-categories, for
example the enriched categories on Kan complexes [2], The categories enriched over
Top as we saw before, and the quasi-categories defined by Joyal. More precisely
Joyal constructed a new model structure on sSet, see [7], where the fibrant object
are by definition quasi-categories (i.e., ∞-categories). We introduce the notion of
quasi-groupoid (i.e., ∞-groupoids) which generalize the notion of groupoids in the
classical setting of categories. We remind also the definition of coherent nerve
for enriched categories on sSet and Top.

Definition 5.1. A quasi-category is a simplicial set X which has a lifting property
for all 0 < i < n:

(5.1) Λni
∀ //

��

X

��
∆n //

∃
>>

∗

It is important to remark that the condition 0 < i < n codify the composition
law up to homotopy. Sometimes, we will call such simplicial complexes by weak
Kan complexes. For example, if C is a classical category, then the nerve N•C
is a quasi-category with an additional property: the lifting, is in fact, unique (cf
[9], proposition 1.1.2.2). Moreover, a simplicial set is isomorphic to the nerve of a
category C if and only if the lifting 5.1 exists and is unique.

Lemma 5.2. A category C is a groupoid iff N•C is a Kan complex.

Proof. If C is a groupoid, then N•C admits a lifting with respect to Λnn → ∆n and
Λn0 → ∆n simply because all arrows in C are invertible. So N•C is a Kan complex.
If N•C is a Kan complex, we have a lifting with respect to Λ2

2 → ∆2. That means,
every diagram in C

x

id

��
y

g //

f
??

x

can be completed by a unique arrow f : y → x, so g is right invertible. We show
that g is left invertible using the lifting property with respect to Λ2

0 → ∆2. So C is
a groupoid. �

The precedent lemma suggest us a definition for an ∞-groupoid.

Definition 5.3. An ∞-category (quasi-category) X is an ∞-groupoid (quasi-
groupoid) if it is a Kan complex.
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Example 5.4. Let Y be a topological space, the simplicial set singY is a Kan
complex. so we can see every topological space as an ∞-groupoid.

Theorem 5.5. [7] (section 6.3) The category sSet admits a model structure where
the cofibrations are the monomorphisms, the fibrant objects are the quasi-categories,
the fibrations are the pseudo-fibrations and the weak equivalences are the categorical
equivalences. This is a cartesian closed model structure. This new structure is noted
by (sSet,Q).

We will explain later what we mean by categorical equivalences, but we don’t
describe explicitly the pseudo-fibration. For each quasi-category X (fibrant object
in (sSet,Q), we can associate its homotopy category (in a classical sense) noted
HoX. This theory was developed by Joyal, see for example [7].

6. Some Quillen adjunctions

Notation 6.1. We will note the category of simplicial sets with Kan model struc-
ture by (sSet,K). The Joyal model structure of quasi-categories will be noted by
(sSet,Q).

In this paragraph, we describe different Quillen adjunction between CatsSet,
(sSet,Q) and (sSet,K).

6.1. CatsSet vs (sSet,Q). The first adjunction is described in details in [9]. We
start by some analogies between classical categories ann simplicial sets.

sSet
τ //

Cat,
N•

oo

the right adjoint is the nerve and the left adjoint associate to each simplicial set
its fundamental category. Note that this adjunction is not a Quillen adjunction for
the two known model structure on Cat ( Thomason structure and Joyal structure).
We remind that the nerve functor is fully faithful and τN• = id. The basic idea is
to ”extend” this adjunction to an adjunction between (sSet,Q) and the category
CatsSet. If we use the standard nerve for the enriched categories on simplicial sets,
by remembering only the 0-simplices, then we will loose all the higher homotopical
information. Because of that, we use an other strategy. First we define a left adjoint
as follow

Ξ : (sSet,Q)→ CatsSet

on ∆n, then we apply the left Kan extension.

Definition 6.2. [9] (1.1.5.1) The enriched category Ξ(∆n) has as objects the 0-
simplices of ∆n, and

Ξ(∆n)(i, j) =
{

Ñ•Pi,j if i ≤ j
∅ if i > j

Where Pi,j is the set partially ordered by inclusion:

{I ⊆ J : (i, j ∈ I) ∧ (∀k ∈ I)[i ≤ k ≤ j]}.

Definition 6.3. The right adjoint to the functor Ξ is called the coherent nerve and
noted by Ñ•. It is defined by the following formula:

ÑnC = homsSet(∆n, Ñ•C) := homCatsSet
(Ξ(∆n),C).
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Now, we can define the categorical equivalences used in the model structure
(sSet,Q). We call a morphism of simplicial sets f : X → Y a categorical equiv-
alence if Ξ(f) : Ξ(X) → Ξ(Y ) is an equivalence of enriched categories, i.e., if
MapΞ(X)(a, b) → MapΞ(Y )(Ξ(f)a,Ξ(f)b) is a weak equivalence of simplicial sets
for all a, b and π0Ξ(f) : π0Ξ(X)→ π0Ξ(Y ) is a equivalence of classical categories.

Theorem 6.4. The following adjunction is a Quillen equivalence between the Joyal
model structure (sSet,Q) [7], and the model category on CatsSet defined in [2]

sSet
Ξ //

CatsSet.fN•oo

For the proof we refer to [9] theorem 2.2.5.1.

Corollary 6.5. Let C an enriched category on Kan complexes, then the counity

ΞÑ•C→ C

is a weak equivalence of enriched categories.

6.2. (sSet,Q) vs (sSet,K). In this paragraph, we describe the Quillen adjunction
between Joyal model structure on simplicial sets and the classical model structure
on sSet which we note by (sSet,K), K for Kan complexes.

Definition 6.6. The functor k : ∆ → sSet is defined by k([n]) = N•[n]
′

for all
n ≥ 0, where N•[n]

′
is the nerve of the free groupoid generated by the category [n].

If X is a simplicial set, we define the functor k! : sSet→ sSet by :

k!(X)n = homsSet(N•[n]
′
, X).

The functor k! has a left adjoint k! which is the left Kan extension of k. From
the inclusion ∆n ⊂ ∆̃n we obtain, for all n, a set morphism k!(X)n → Xn which is
n-level of a simplicial morphism βX : k!(X) → X. More precisely, β : k! → id is
a natural transformation. Dually, we define a natural transformation α : id→ k!

Theorem 6.7. The adjoint functors

(sSet,Kan)
k! //

(sSet,Q).
k!

oo

is a Quillen adjunction. Moreover, αX : X → k!(X) is an equivalence for each X.

Proof. For the proof, see ([7], 6.22). �

6.3. ∞-groupoids. In this paragraph, we define a notion of groupoid for categories
enriched on simplicial sets or topological spaces, Which we compare with the notion
of ∞-groupoid defined for quasi-categories.

Definition 6.8. An enriched category C on sSet (or Top) is an ∞-groupoid if
π0C is a groupoid in the classical sense of categories. If C is enriched on sSet
(Top), the ∞-groupoid GC associated to C is a fibered product in CatsSet (or
CatTop):

GC = isoπ0C×π0C C //

��

C

��
isoπ0C // π0C.
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We remark that the functor π0 : CatsSet → Cat is a left adjoint, so it does
not necessary commute with limits in general. But the evident projection pr :
π0GC→ isoπ0C is an isomorphism. In fact, if w1 and w2 are weak equivalences in
MapC(a, b) and h is a homotopy between them (i.e. un 1-simplex in MapC(a, b)
such that the borders are w1, w2), then h is also a homotopy in MapGC(a, b).
This prove that the projection pr is fully faithful. the essential surjectivity of pr is
evident.
The full subcategory of CatsSet of ∞-groupoids is noted by GrpsSet.

Lemma 6.9. The functor G : CatsSet → GrpsSet is the right adjoint of the
inclusion, i.e.,

homGrpsSet
(C, GD) = homCatsSet

(C,D)
∀C ∈ GrpsSet and D ∈ CatsSet.

Remark 6.10. We can do the same thing for CatTop.

Proof. Let C be an ∞-groupoid and let D ∈ CatsSet. A morphism f : C → D
define in a unique way an adjoint morphism g : C → GD given by the universal
map

C
f

&&
φ

!!

∃!g

%%
q

��

GD //

��

D

��
π0C

π0f // iso π0D // π0D
The morphism φ = π0f ◦ q exists and make the diagram commuting, since C is

an ∞-groupoid.
�

Let [n]
′

denote the groupoid freely generated by the category [n]. An example
of ∞-groupoid is the category Ξk!∆n. In fact, Ξk!∆n = ΞÑ•[n]

′ → [n]
′

is a weak
categorical equivalence and [n]

′
is fibrant. Since [n]

′
is a groupoid, then π0Ξk!∆n

is also a groupoid .

Lemma 6.11. Let C a fibrant category enriched on sSet, then k!Ñ•C = k!Ñ•GC,
where GC is an ∞-groupoid associated to C.

Proof. Using the precedent adjunctions, we have for all n ≥ 0

(k!Ñ•C)n = homsSet(∆n, k!Ñ•C)(6.1)

= homsSet(k!∆n, Ñ•C)(6.2)
= homCatsSet

(Ξk!∆n,C)(6.3)

But Ξk!∆n is an ∞-groupoid, so

homCatsSet
(Ξk!∆n,C) = homGrpsSet

(Ξk!∆n, GC)(6.4)
= homCatsSet

(Ξk!∆n, GC)(6.5)

= homsSet(∆n, k!Ñ•GC)(6.6)

= (k!Ñ•GC)n(6.7)
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we conclude that k!Ñ•GC = k!Ñ•C. �

Definition 6.12. [2] In Bergner’s model structure on CatsSet [2] a morphism
F : C→ D is a fibration if

(1) MapC(a, b)→MapD(Fa, Fb) is a fibration of simplicial sets for all a, b ∈
C.

(2) F has a lifting property of weak equivalences, i.e. it is Grothendieck fibra-
tion for weak equivalences.

Corollary 6.13. Let GC the ∞-groupoid associated to the enriched category C
over Kan complexes (or Top), then

Ñ•GC→ N•iso π0C

pseudo-fibration (cf. [7] ) in (sSet,Q).

Proof. Remark that if C is fibrant, then C → π0C is a fibration. The Bergner’s
model structure is right proper so GC→ iso π0C is also a fibration. Moreover, the
groupoid isoπ0C is fibrant, and so GC is. Consequently Ñ•GC → Ñ•iso π0C is
a pseudo-fibration in the category (sSet,Q), So a pseudo fibration between quasi-
categories.

But the category π0C is a constant simplicial category, so Ñ•iso π0C = N•iso π0C.
We conclude that Ñ•GC→ N•iso π0C is a peudo-fibration between quasi-category
and a Kan complex, see 5.2. �

Let X a quasi-category, Joyal defined the homotopy category Ho(X) which is
a category in the classical sense. The 0-simplexes of X form the set of objets of
Ho(X) and the 1-simplexes (modulo the homotopy equivalence) form the morphisms
of Ho(X). A 1-simplex in X is called an weak equivalence if it is represented in
Ho(X) by an isomorphism.

Definition 6.14. Let p : X → Y a morphism between quasi-categories, and let w
a 1-simplex in X, then p is called conservative if:

p(w) a weak equivalence in Y ⇒ w a weak equivalence in X.

Lemma 6.15. ([7], 4.30) Let p : X → Y be a morphism between quasi-categories,
such that p is a pseudo-fibration and conservative. If Y is a Kan complex, then X
is.

Lemma 6.16. Let C ∈ CatsSet be fibrant object, then Ñ•GC is a Kan complex,
where GC is the ∞-groupoid associated to C.

Proof. We have seen by the corollary 6.13 that if C is fibrant, then Ñ•GC →
N•iso π0C is a pseudo-fibration between quasi-categories, and N•iso π0C is a Kan
complex. We must verify that the morphism is conservative, which is an evident
fact because all 0-simplices of MapGC(a, b) are weak equivalences by definition.
By the lemma 6.15, we conclude that Ñ•GC is a Kan complex. �

In [7] (Theorem 4.19) , Joyal construct an adjunction between Kan complexes
and quasi-categories. If we note by Kan the full subcategory of sSet of Kan
complexes, and by QCat the full subcategory of sSet of quasi-categories, then
the inclusion Kan ⊂ QCat admits a right adjoint noted by J. The functor can
be interpreted as follow: for each quasi-category X, J(X) is the quasi-groupoid
associated to X, and if X is a Kan complex, then J(X) = X.
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Lemma 6.17. Let X be a quasi-category (a fibrant object) in (sSet,Q). The
natural transformation βX : k!(X) → X is factored by βX : k!(X) → J(X) ⊂ X.
Moreover, βX : k!(X)→ J(X) is a trivial Kan fibration.

Proof. See [7], proposition 6.26. �

Corollary 6.18. Let C ∈ CatsSet be a fibrant category , and GC the associated
∞-groupoid. Then k!Ñ•(C)→ Ñ•(GC) is a trivial Kan fibration.

Proof. Since C is fibrant, we have seen that k!Ñ•(C) = k!Ñ•(GC), and by the
precedent lemma k!Ñ•(GC)→ J(Ñ•(GC)) is a trivial Kan fibration. But Ñ•(GC)
is a Kan complex, since GC is a fibrant∞-groupoid, so J(Ñ•(GC)) = Ñ•(GC). �

Now, we can see the analogy between N•iso in the case of classical categories
and the functor k!Ñ• in the case of enriched categories over sSet. In fact, if C is a
classical category, then the functor iso sends C to its associated groupoid GC and
so N•isoC = N•GC. If C is a category enriched over Kan complexes,( i.e., C is
fibrant in Bergner’s model structure), then the simplicial set k!Ñ•C is equivalent
to Ñ•GC by the corollary 6.18.

7. mapping space

The goal of this section is to describe the mapping space of the model category
CatTop.

Theorem 7.1. [[3], theorem 2.12.] Let a Quillen adjunction of Quillen model
categories :

C
W //

D.
Z

oo

The there is a natural isomorphism

mapC(a,RZb)→mapD(LWa, b)

in Ho(sSet)

7.1. Mapping space in CatTop and CatsSet. Suppose that C is a small enriched
category on Top. We define the coherent nerve of C by Ñ•singC, and we define
the corresponding ∞- groupoid GC by

GC = iso π0C×π0C C //

��

C

��
iso π0C // π0C

By applying the functor sing to this diagram, we obtain also a pullback diagram
since sing since it is a right adjoint. We note that sing π0C = π0sing C = π0C and
sing isoπ0C = iso π0C = iso π0singC

G sing C = sing(isoπ0C×π0C C) //

��

sing C

��
sing iso π0C // sing π0C
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We conclude that
sing GC = G sing C.

Moreover, k! Ñ• sing C is weak equivalent to Ñ• sing GC.

Corollary 7.2. For every (fibrant) small category enriched on sSet, we have the
following isomorphism in Ho(sSet)

k!Ñ•C ∼mapsSet(∗, k!Ñ•C) ∼ Ñ•GC ∼mapCatsSet
(∗,C)

and by the same way, if D is a small category enriched on Top, then

mapCatTop
(∗,D) ∼ k!Ñ•singD ∼ Ñ•GsingD.

More generally, we have that:

mapCatTop
(|Ξk!(A)|,D) ∼mapsSet(A, k

!Ñ•singD) ∼Map(A, Ñ•GsingD),

where Map is the right adjoint functor to the cartesian product in sSet and A any
simplicial set.

Proof. The homotopy type of the mapping space mapCatTop
(∗,C) is computed

easily using the theorem 7.1, and the adjunction

sSet
Ξk! //

CatsSet.
k! fN•oo

and by the corollary 6.18, we conclude that

mapCatsSet
(∗,C) ∼ Ñ•GC.

respectively

mapCatTop
(∗,D) ∼ Ñ•GsingD.

�

In the classical setting of Cat, we know that mapCat(A,B) ∼ N•isoHOMCat(A,B).
If A is the equivalent to the terminal category ∗, then mapCat(∗,B) ∼ N•isoB.

Now, the similarity between Cat and CatsSet (CatTop) is evident.

Following the article [11] in which there is an explicit description of the mapping
space the category of dg-categories denoted by dg −Cat. B. Toën proved that the
category Ho(dg −Cat) is symmetric monoidal closed category and so :

mapdg−Cat(M⊗L C,D) ∼mapdg−Cat(M,RHOM(C,D)).

Essentially, we can adopt the same prove to show that HoCatV is symmetric
monoidal closed category.

Moreover, RHOM(C,D) is the V-category of right quasi representable (fibrant-
cofibrant) [11] Cop ×L D-modules.

Corollary 7.3. Let D be a topological category or fibrant simplicial category and
C a cofibrant object in CatV then:

mapCatV(C,D) ∼ N• wRHOM(C,D) ∼ Ñ•GRHOM(C,D)
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where GRHOM(C,D) the∞-groupoid associated to RHOM(C,D) , wRHOM(C,D)
is the discrete subcategory of weak equivalences and N• the standard nerve of dis-
crete categories (enriched over Set). and more specially

Ñ•GD ∼ N•w RHOM(∗,D) ∼ Ñ•GRHOM(∗,D).

Proof. By 7.1 we have that mapCatV(C,D) ∼ mapCatV(∗,RHOM(C,D)). By
corollary 7.2 we have that mapCatV(∗,RHOM(C,D)) ∼ Ñ•GRHOM(C,D). Fi-
nally by [11], mapCatV(C,D) ∼ N•wRHOM(C,D). �

Now we state a surprising result, which relate the enriched case to the discrete
one.

Corollary 7.4. Suppose that D = RHOM(∗,C) then

Ñ•GD ∼ N• wD

Proof. We have seen that N•GD ∼ N•wRHOM(∗,D). Replacing D by RHOM(∗,C)
we obtain

Ñ•GD ∼ N•wRHOM(∗,RHOM(∗,C)) ∼mapCatV(∗ ×L ∗,C) ∼ N•w D.

�

8. localization

In this paragraph we show how to construct a localization for a topological
category with respect to a morphism or a set of morphisms. In the classical setting
of small categories we know how to define the localization in a functorial way. The
idea is quite simple, let C ∈ Cat and f be a morphism in C, we want to define a
functor C → LfC and having the following universal property: if F : C → D is a
functor such that F (f) is an isomorphism in D then there is a unique factorization
of F as

C→ LfC→ D.

Notation 8.1. In this section, the category with two objects x and y and with one
non trivial morphism from x to y will be denoted A.
The category with the same objects x and y and an isomorphism from x to y (resp.
from y to x ) will be denoted B.

Lemma 8.2. The category LfC is isomorphic to following pushout in Cat:

A
f //

inc

��

C

i

��
B // M

Where inc is the evident inclusion and f sends the unique arrow in A to the mor-
phism f in C.

Proof. Suppose that we have a functor F : C → D such that the morphism f is
sent to an isomorphism. It induce a functor from B→ D. By the pushout property
we have a unique functor from M to D which factors the functor F . So LfC is
isomorphic to M. �
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Corollary 8.3. For any set S of morphism in C the category LSC exist and it is
unique up to isomorphism.

Now, we are interested for the same construction in the enriched setting CatTop.
The main difference with the classical case is the the existence, we will construct a
functorial model for the localization up to homotopy.

Notation 8.4. We denote by Ah the topological category |ΞN•A| and by Bh the
category |ΞN•B|

choosing a morphism f in a topological category C we want to construct a
category a category LfC with the following property: given a morphism F : C→ D
in CatTop such that F (f) is a weak equivalence in D then F is factored (unique
up to homotopy) as

C→ LfC→ D.

Lemma 8.5. The category LfC could be taken as following pushout in CatTop:

Ah
f //

inc

��

C

i

��
Bh // M

Moreover, π0C→ Lπ0(f)π0C is a localization in Cat and C→ LfC is a cofibration
in CatTop.

Proof. First, we note that the inclusion inc is a cofibration in CatTop. The functor
Ah → C is constructed as follow: Let A → C be a functor which sends the
only nontrivial morphism of A to f ∈ C. It induces a map of simplicial sets
N•A → Ñ•singC and by adjunction a functor |ΞN•A| → C which is the functor
noted f : Ah → C in the diagram. The functor inc : Ah → Bh is induced by the
functor inc : A→ B. Now suppose that we have a functor C→ D which sends f to
a weak equivalence in D. The induced functor Ah → D factors by Ah → GD→ D
where GD is the associated groupoid of D as seen in previews section.
Consider the diagram:

Ah //

inc

��

GD

i

��
Bh // ?

and using the adjunctions we have a corresponding diagram in sSet

N•A //

inc′

��

Ñ•singGD

i′

��
N•B // ?

But now singGD is a Kan complex see 6.16 and inc′ is a trivial cofibration in sSet,
so there exist a lifting (not unique) N•B → singGD. By adjunction we have a
lifting Bh → GD → D. So we can define unique morphism (up to homotopy)
M → D and any functor C → D as before factors (uniquely up to homotopy)
by C → M → D. So a functorial model for LfC is M and the localization map
C→ LfC is a cofibration and in fact an inclusion of enriched categories. �
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Corollary 8.6. For any set S of morphism in a topological category C, the topolog-
ical category LSC exist and it is unique up to homotopy. Moreover, the localization
map C→ LSC is a cofibration.
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