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COMPARING COMMUTATIVE AND ASSOCIATIVE

UNBOUNDED DIFFERENTIAL GRADED ALGEBRAS OVER Q

FROM HOMOTOPICAL POINT OF VIEW

ILIAS AMRANI

Abstract. In this paper we establish a faithfulness result, in a homotopical
sense, between a subcategory of the model category of augmented differential
graded commutative algebras CDGA and a subcategory of the model cate-
gory of augmented differential graded algebras DGA over the field of rational
numbers Q.

Introduction

It is well known that the forgetful functor from the category of commutative
k-algebras to the category of category of associative k-algebras is fully faithful.
We have an analogue result between the category of unbounded differential graded
commutative k-algebras dgCAlgk and the category of unbounded differential graded
associative algebras dgAlgk. The question that we want explore is the following:
Suppose that k = Q, is it true that forgetful functor U : dgCAlgk → dgAlgk induces
a fully faithful functor at the level of homotopy categories

RU : Ho(dgCAlgk)→ Ho(dgAlgk).

The answer is no. A nice and easy counterexample was given by Lurie. He has
considered k[x, y] the free commutative CDGA in two variables concentrated in
degree 0. It follows obviously that

Ho(dgCAlgk)(k[x, y], S) ≃ H0(S)⊕H0(S),

while
Ho(dgAlgk)(k[x, y], S) ≃ H0(S)⊕H0(S)⊕H−1(S).

Something nice happens if we consider the category of augmented CDGA denoted
by dgCAlg∗k and augmented DGA denoted by dgAlg∗k.

Theorem 0.1 (3.1). For any R and S in dgCAlg∗k, the induced map by the forgetful

functor

ΩMapdgCAlg∗
k

(R,S)→ ΩMapdgAlg∗
k

(R,S),

has a retract, in particular

πiMapdgCAlg∗
k

(R,S)→ πiMapdgAlg∗
k

(R,S)

is injective ∀ i > 0.
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Let S be a differential graded commutative algebra which is a ”loop” of an
other CDGA algebra A, i.e. S = Holim(k → A ← k), where the homotopy limit
is taken in the model category dgCAlgk. A direct consequence of our theorem
is that the right derived functor RU is a faithful functor i.e., the induced map
Ho(dgCAlg∗k)(R,S)→ Ho(dgAlg∗k)(R,S) is injective.

Interpretation of the result in the derived algebraic geometry. Rationally,
any pointed topological X space can be viewed as an augmented (connective) com-
mutative differential graded algebra via its cochain complex C∗(X,Q). In case
where X is a simply connected rational space, the cochain complex C∗(X,Q) car-
ries the whole homotopical information about X , by Sullivan Theorem [5]. More-
over, the bar construction BC∗(X,Q) is identified (as E∞-DGA) to C∗(ΩX,Q) and
ΩC∗(X,Q) is identified (as E∞-DGA) to C∗(ΣX,Q) cf. [4]. This interpretation
allows us to make the following definition: A generalized rational pointed space is
an augmented commutative differential graded Q-algebra (possibly unbounded). In
the same spirit, we define a pointed generalized noncommutative rational space

as an augmented differential graded Q-algebra (possibly unbounded). Let A be any
augmented CDGA resp. DGA, we will call a CDGA resp. DGA of the form ΩA a
op-suspended CDGA resp. DGA. Our theorem 3.1, can be interpreted as follows:
The homotopy category of op-suspended generalized commutative ratio-

nal spaces is a subcategory of the homotopy category of op-suspended

generalized noncommutative rational spaces.

1. DGA, CDGA and E∞-DGA.

We work in the setting of unbounded differential graded k-modules dgModk. This
is a a symmetric monoidal closed model category (k is a commutative ring). We
denote the category of (reduced) operads in dgModk by Opk. We follow notations
and definitions of [2], we say that an operad P is admissible if the category of
P−dgAlgk admits a model structure where the fibrations are degree wise surjections
and weak equivalence are quasi-isomorphisms. For any map of operads φ : P → Q

we have an induced adjunction of the corresponding categories of algebras:

P− dgAlgk
φ! // Q− dgAlgk.
φ∗

oo

A Σ-cofibrant operad P is an operad such that P(n) is k[Σn]-cofibrant in dgModk[Σn].

Any cofibrant operad P is a Σ-cofibrant operad [2, Proposition 4.3]. We denote the
associative operad by Ass and the commutative operad by Com.The operad Ass is
an admissible operad and Σ-cofibrant, while the operad Com is not admissible in
general. In the rational case, when k = Q the operad Com is admissible but not
Σ-cofibrant. More generally any cofibrant operad P is admissible [2, Proposition
4.1, Remark 4.2]. We define a symmetric tensor product of operads by the formulae

[P⊗ Q](n) = P(n)⊗ Q(n), ∀ n ∈ N.

Lemma 1.1. Suppose that φ : Ass → P is a cofibration of operads.The operad

P is admissible and the functor φ∗ : P − dgAlgk → dgAlgk preserves fibrations,

weak equivalences and cofibrations with cofibrant domain in the inderleing category

dgModk.
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Proof. First of all, the operad P is admissible, indeed we use the cofibrant resolution
r : E∞ → Com and consider the following pushout in Opk given by:

Ass∞
� � //

∼
����

E∞

α

��
Ass

f
// E

′

∞

Where Ass∞ in the cofibrant replacement of Ass in Opk and Ass∞ → E∞ is a cofi-
bration. Since the category Opk is left proper in the sense of [8, Theorem 3], we

have that α : E∞ → E
′

∞ is an equivalence. We denote by I the unit interval in the
category dgModk which is strictly coassociative. The opposite endomorphism op-
erad Endop(I) has a structure of E∞-algbra and Ass∞-algebra which factors through
Ass i.e., we have two compatible maps of operads:

Ass∞
� � //

∼
����

E∞

α

��

��✺
✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

Ass
� � f

//

))❙❙
❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

E
′

∞

##
Endop(I)

by the universality of the pushout, we have a map of operads E
′

∞ → Endop(I). This

means that the unit interval I has a structure of E
′

∞-colagebra [2, p.4]. Moreover,
we have a commutative diagram in Opk given by

Ass
∆ //

� _

φ

��

Ass⊗ Ass
φ⊗f

// P⊗ E
′

∞

∼id⊗r

����
P

id // P⊗ Com = P

where the diagonal map ∆ : Ass → Ass ⊗ Ass is induced by the diagonals Σn →

Σn×Σn. Hence, the map P⊗E
′

∞ → P admits a section. It implies by [2, Proposition
4.1], that P is admissible and Σ-cofibrant. Since all objects in P−dgAlgk are fibrant
and φ∗ is a right Quillen adjoint, it preserves fibrations and weak equivalences.

Since P is an admissible operad, we have a Quillen adjunction

dgAlgk
φ! // P− dgAlgk,
φ∗

oo

where the functor φ∗ is identified to the forgetful functor. Moreover, the model
structure on P − dgAlgk is the transfered model structure from the cofibrantly
generated model structure dgAlgk via the adjunction φ!, φ

∗. Suppose that f : A→
C is a cofibration in P− dgAlgk such that A is cofibrant in dgModk. We factor this
map as a cofibration followed by a trivial fibration

A
� � i // P

p

∼
// // B
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in the category dgAlgk. By [7, Lemma 4.1.16], we have an induced map of endo-
morphism operads (of diagrmas):

End{A→P→B} → End{A→B}

which is a trivial fibration. Moreover, we have the following commutative diagram
in Opk

Ass� _

��

// End{A→P→B}

∼
����

P //

99

End{A→B}

Since Opk is a model category, it implies that we have a lifting map of operads
P→ End{A→P→B}, hence i and p are maps of P− dgAlgk. Therefore, we consider
the following commutative square in the category P− dgAlgk

A� _

f

��

i // P

∼ p
����

B
id //

r

>>

B

the lifting map r exists since P − dgAlgk is a model category, we conclude that
p◦r = id and r ◦f = i, which means that f is a retract of i, hence f is a cofibration
in dgAlgk. �

Remark 1.2. With the same notation as in 1.1, if A is a cofibrant object in P−dgAlgk
then A is a cofibrant object in dgModk. Indeed k → A is a cofibration in P−dgAlgk,
by the previous lemma k → A is a cofibration in dgAlgk. Therefore, k → A is a
cofibration in dgModk.

2. Suspension in CGDA and DGA

We denote the the operad E
′

∞ of the previous section by E∞, and k = Q.

2.1. E∞-DGA. We have a map of operads Ass → Com, which we factor as cofi-
bration followed by a trivial fibration.

Ass
� � // E∞

∼ // // Com

As a consequence, we have the following Quillen adjunctions

dgAlgk
Ab∞ // E∞dgAlgk
U

oo
str // dgCAlgk
U

′

oo

These adjunctions have the following properties:

• The functors U
′

and U ◦ U
′

and are the forgetful functors, they are fully
faithful cf 2.3 and 2.2.
• The functors str, U

′

form a Quillen equivalence since k = Q cf [6, Corollary
1.5]. The functor str is the strictification functor.
• The functors Ab∞, U form a Quillen pair.
• The composition str ◦ Ab∞ is the abelianization functor Ab : dgAlgk →
dgCAlgk.

• The functors str and Ab are idenpotent functors. cf 2.3 and 2.2.
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The model categories dgCAlg∗k and dgAlg∗k and E∞dgAlg∗k are pointed model cate-
gories. It is natural to introduce the suspension functors in these categories.

Definition 2.1. Let C be any pointed model category, we denote the point by 1,
and let A ∈ C, a suspension ΣA is defined as hocolim(1← A→ 1).

Proposition 2.2. Any map f : A→ S in E∞dgAlgk, where S is in dgCAlgk factors

in a unique way as A → str(A) → S and the forgetful functor U
′

: dgCAlgk →
E∞dgAlgk is fully faithful. Moreover, the unit of the adjunction νA : A → str(A)
is a fibration.

Proof. Suppose that we have a map h : R→ S in E∞dgAlgk such that R and S are
objects in dgCAlgk. By definition of the operad E∞ the map h has to be associative,
therefore h is a morphism in dgCAlgk since R and S are commutative differential

graded algebras. The forgetful functor U
′

: dgCAlgk → E∞dgAlgk is fully faithful,
this implies that str(S) = S for any S ∈ dgCAlgk. We have a commutative diagram

induced by the unit ν of the adjunction (U
′

, str) :

A
f

//

νA

��

S

νS=id

��
str(A)

str(f)
// str(S) = S.

We conclude that f = str(f) ◦ νA. The surjectivity of the νA follows from the
universal property of str(A). Hence, νA is a fibration in E∞dgAlgk. �

Proposition 2.3. Any map f : A→ S in dgAlgk, where S is in dgCAlgk factors in a

unique way as A→ Ab(A)→ S and the forgetful functor U ◦U
′

: dgCAlgk → dgAlgk
is fully faithful. Moreover, the unit of the adjunction νA : A→ Ab(A) is a fibration.

Proof. The proof is the same as in 2.2. �

Proposition 2.4. Suppose that we have a trivial cofibration k → k in E∞dgAlgk.
Then the universal map π : Ab(k) → str(k) is a trivial fibration and admits a
section in the category dgCAlgk.

Proof. We consider the following commutative diagram in E∞dgAlgk:

k
∼ //

id

��

k

��
k = str(k)

∼ // str(k).

The map k → str(k) is an equivalence since str is left Quillen functor, the same
thing holds for the abelianization functor i.e., k → Ab(k) is a trivial fibration,
since k → k is a trivial cofibration in dgAlgk 1.1 and Ab is a left Quillen functor.
On another hand the map k → str(k), which is a trivial fibration in E∞dgAlgk
and hence in dgAlgk, can be factored (cf 2.3) as k → Ab(k) → str(k), where
Ab(k)→ str(k) is a trivial fibration between cofibrant object in dgCAlgk. It follows
that we have a retract l : str(k)→ Ab(k). �

Definition 2.5. The suspension functor in the pointed model categories dgCAlg∗k,
dgAlg∗k and E∞dgAlg∗k are denoted by B, Σ and B∞.
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Lemma 2.6. Suppose that A is a cofibrant object in E∞dgAlg∗k, and i : A → k a

cofibration, then str(B∞A) is a retract of Ab(ΣA) in the category dgCAlgk.

Proof. First of all if a map f is associative, commutative resp. E∞-map we put
an index fa, fc resp. f∞, notice that by definition of the operad E∞ any E∞-map
is a strictly associative map. Suppose that A is a cofibrant object in E∞dgAlgk.
Consider the following commutative square:

A
� � i∞ //
� _

i∞

��

k � _

ha

��
f∞

��

k
� � ha //

f∞
**

ΣA

∃!

ua

""
B∞A

where ΣA is the (homotopy 1.1) pushout in dgAlgk and B∞A is the (homotopy)
pushout in E∞dgAlgk. By proposition 2.2 and proposition 2.3 we have a following
commutative square in dgAlgk:

ΣA
ua //

��

B∞A

��
Ab(ΣA)

xc // str[B∞A] = B[str(A)].

By 2.4 we have an inclusion of commutative differential graded algebras lc :
str(k)→ Ab(k) and after strictification we obtain on another (homotopy) pushout
square in dgCAlgk given by

str(A) �
� ic //

� _

ic

��

str(k)
� _

fc

��

� � lc // Ab(k)
� _

hc

��

str(k) �
� fc //

� _

lc

��

B[str(A)]

∃!

uc

&&
Ab(k) �

� hc // Ab(Σ(A)).

In order to prove that B[str(A)] is a retract of Ab(Σ(A)) it is sufficient to prove
that

xc ◦ hc ◦ lc = fc.
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By proposition 2.2 and proposition 2.3, the composition E∞-maps

k
f∞ // B∞A // str[B∞A]

can be factored in a unique way as

k // Ab(k)
π // str(k)

αc // str[B∞A] = B[str(A)].

By unicity, αc = fc. On another hand, using the first poushout in E∞dgAlgk, the
previous composition k → str[B∞A] is factored as

k
ha // ΣA // Ab(ΣA)

xc // str[B∞A].

We summarize the previous remarks in the following commutative diagram:

k
pr

//

id

��

Ab(k)
π //

hc

��

str(k)
fc // str[B∞A]

id

��
k // Ab(ΣA)

xc // str[B∞A]

by definition of ha, the doted map hc makes the left square commutative. Since
the whole square is commutative and the map pr is surjective we conclude that
xc ◦ hc = fc ◦ π. Since the map lc : Str(k) → Ab(k) is a retract of π (Cf. 2.4) i.e.,
π ◦ lc = id, we conclude that xc ◦ hc ◦ lc = fc. Finally, by unicity of the pushout,
we deduce that the following composition

B[str(A)]
uc // Ab(ΣA)

xc // B[str(A)]

is identity. �

3. Main result and applications

Theorem 3.1. For any R and S in dgCAlg∗k, the induced map by the forgetful

functor

ΩMapdgCAlg∗
k

(R,S)→ ΩMapdgAlg∗
k

(R,S),

has a retract, in particular

πiMapdgCAlg∗
k

(R,S)→ πiMapdgAlg∗
k

(R,S)

is injective ∀ i > 0.

Proof. Suppose that R is (cofibrant) object in E∞dgAlgk and S any object in
dgCAlgk. By adjunction, we have that

ΩMapdgCAlg∗
k

(str(R), S) ∼ MapdgCAlg∗
k

(B[str(R)], S) (3.1)

∼ MapdgCAlg∗
k

(str[B∞R], S) (3.2)

∼ MapE∞dgAlg∗
k

(B∞R,S) (3.3)

∼ ΩMapE∞dgAlg∗
k

(R,S). (3.4)

By Lemma 2.6, we have a retract

MapdgCAlg∗
k

(B[str(R)], S)→ MapdgCAlg∗
k

(Ab(ΣR), S)→ MapdgCAlg∗
k

(B[str(R)], S).

Again by adjunction:

MapdgCAlg∗
k

(Ab(ΣR), S) ∼ MapdgAlg∗
k

(ΣR,S) ∼ ΩMapdgAlg∗
k

(R,S).
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We conclude that

ΩMapE∞dgAlg∗
k

(R,S)
U // ΩMapdgAlg∗

k

(R,S) // ΩMapE∞dgAlg∗
k

(R,S)

is a retract. Hence, the forgetful functor U induces a injective map on homotopy
groups i.e.,

πiMapdgCAlg∗
k

(str(R), S) ≃ πiMapE∞dgAlg∗
k

(R,S)→ πiMapdgAlg∗
k

(R,S)

is injective ∀ i > 0. �

3.1. Rational homotopy theory. We give an application of our theorem 3.1 in
the context of rational homotopy theory. Let X be a simply connected rational
space such that πiX is finite dimensional Q-vector space for each i > 0. Let C∗(X)
be the differential graded Q-algebra cochain associated to X which is a connective
E∞dgAlgk. By Sullivan theorem πiX ≃ πiMapdgCAlg∗

k

(C∗(X),Q). By 3.1, we have

that πiX is a sub Q-vector space of πiMapdgAlg∗
k

(R,S). On another hand [1], since

C∗(X) is connective, we have that for any i > 1

πiMapdgAlg∗
k

(C∗(X),Q) ≃ HH−1+i(C∗(X),Q),

where HH∗ is the Hochschild cohomology. Since we have assumed finiteness condi-
tion on X , we have that

HH−1+i(C∗(X),Q) ≃ HHi−1(C
∗(X),Q).

The functor C∗(−,Q) : Topop → E∞dgAlgk commutes with finite homotopy limits,
where Top is the category of simply connected spaces. Hence,

HH−1+i(C
∗(X),Q) = Hi−1[C∗(X)⊗L

C∗(X×X) Q] ≃ Hi−1(ΩX,Q).

We conclude that πiX is a sub Q-vector space of Hi−1(ΩX,Q).
More generally by Block-Lazarev result [3] on rational homotopy theory and [1],
we have an injective map of Q-vector spaces

AQ−i(C∗(X), C∗(Y ))→ HH−i+1(C∗(X), C∗(Y )),

where the C∗(X)-(bi)modules structure on C∗(Y ) is given by C∗(X) → Q →

C∗(Y ), and AQ∗ is the André-Quillen cohomology. We also assume that X and Y

are simply connected and i > 1.
More generally,

πiMapE∞dgAlgk
(R,S) = AQ−i(R,S)→ HH−i+1(R,S) = πiMapdgAlgk(R,S)

is an injective map of Q-vector spaces for all i > 1 and any augmented E∞-
differential graded connective Q-algebras R and S, where the action of S on R

is given by S → Q→ R.

Acknowledgement : I’m grateful to Benôıt Fresse for his nice explanation of
Lemma 1.1, the key point of the proof is due to him.



9

References

[1] Ilias Amrani. The mapping space of unbounded differential graded algebras. arXiv preprint
arXiv:1303.6895, 2013.

[2] C. Berger and I. Moerdijk. Axiomatic homotopy theory for operads. Commentarii Mathematici
Helvetici, 78(4):805–831, 2003.

[3] Jonathan Block and Andrej Lazarev. André–Quillen cohomology and rational homotopy of
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