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COMPARING COMMUTATIVE AND ASSOCIATIVE
UNBOUNDED DIFFERENTIAL GRADED ALGEBRAS OVER Q
FROM HOMOTOPICAL POINT OF VIEW

ILIAS AMRANI

ABSTRACT. In this paper we establish a faithfulness result, in a homotopical
sense, between a subcategory of the model category of augmented differential
graded commutative algebras CDGA and a subcategory of the model cate-
gory of augmented differential graded algebras DGA over the field of rational
numbers Q.

INTRODUCTION

It is well known that the forgetful functor from the category of commutative
k-algebras to the category of category of associative k-algebras is fully faithful.
We have an analogue result between the category of unbounded differential graded
commutative k-algebras dgCAlg; and the category of unbounded differential graded
associative algebras dgAlg,. The question that we want explore is the following:
Suppose that k = Q, is it true that forgetful functor U : dgCAlg; — dgAlg, induces
a fully faithful functor at the level of homotopy categories

RU : Ho(dgCAlg;,) — Ho(dgAlg,,).

The answer is no. A nice and easy counterexample was given by Lurie. He has
considered k[z,y] the free commutative CDGA in two variables concentrated in
degree 0. It follows obviously that

Ho(dgCAlg;,) (k[z,y], S) ~ H°(S) @ HO(S),
while
Ho(dgAlg,,)(k[z, ], S) ~ H(S) @ H°(S) @ H1(S).

Something nice happens if we consider the category of augmented CDGA denoted
by dgCAlg; and augmented DGA denoted by dgAlgy.

Theorem 0.1 B.1)). For any R and S in dgCAlg},, the induced map by the forgetful
functor

OMapggcprg: (1, 5) = QMapggaig: (R, S),
has a retract, in particular

T‘—iMapdgCAlg; (R, S) — WiMapdgA|gz (R, S)

is injective ¥ i > 0.
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Let S be a differential graded commutative algebra which is a ”loop” of an
other CDGA algebra A, i.e. S = Holim(k — A «< k), where the homotopy limit
is taken in the model category dgCAlg,. A direct consequence of our theorem
is that the right derived functor RU is a faithful functor i.e., the induced map
Ho(dgCAlgr)(R, S) — Ho(dgAlg})(R, S) is injective.

Interpretation of the result in the derived algebraic geometry. Rationally,
any pointed topological X space can be viewed as an augmented (connective) com-
mutative differential graded algebra via its cochain complex C*(X,Q). In case
where X is a simply connected rational space, the cochain complex C*(X, Q) car-
ries the whole homotopical information about X, by Sullivan Theorem [5]. More-
over, the bar construction BC*(X, Q) is identified (as Eco-DGA) to C*(QX, Q) and
0C*(X,Q) is identified (as Eco-DGA) to C*(XX,Q) cf. []. This interpretation
allows us to make the following definition: A generalized rational pointed space is
an augmented commutative differential graded Q-algebra (possibly unbounded). In
the same spirit, we define a pointed generalized noncommutative rational space
as an augmented differential graded Q-algebra (possibly unbounded). Let A be any
augmented CDGA resp. DGA, we will call a CDGA resp. DGA of the form QA a
op-suspended CDGA resp. DGA. Our theorem [3.1] can be interpreted as follows:
The homotopy category of op-suspended generalized commutative ratio-
nal spaces is a subcategory of the homotopy category of op-suspended
generalized noncommutative rational spaces.

1. DGA, CDGA AND E,.-DGA.

We work in the setting of unbounded differential graded k-modules dgMod,,. This
is a a symmetric monoidal closed model category (k is a commutative ring). We
denote the category of (reduced) operads in dgMod,, by Op,. We follow notations
and definitions of [2], we say that an operad P is admissible if the category of
P —dgAlg;, admits a model structure where the fibrations are degree wise surjections
and weak equivalence are quasi-isomorphisms. For any map of operads ¢ : P — Q
we have an induced adjunction of the corresponding categories of algebras:

P
P — dgAlg, ——= Q — dgAlg;.
e

A Y-cofibrant operad P is an operad such that P(n) is k[, ]-cofibrant in dgModys; ;-
Any cofibrant operad P is a X-cofibrant operad [2, Proposition 4.3]. We denote the
associative operad by Ass and the commutative operad by Com.The operad Ass is
an admissible operad and X-cofibrant, while the operad Com is not admissible in
general. In the rational case, when & = Q the operad Com is admissible but not
Y-cofibrant. More generally any cofibrant operad P is admissible |2, Proposition
4.1, Remark 4.2]. We define a symmetric tensor product of operads by the formulae

[P®Q](n) =P(n)®Q(n), ¥n €N.

Lemma 1.1. Suppose that ¢ : Ass — P is a cofibration of operads.The operad
P is admissible and the functor ¢* : P — dgAlg, — dgAlg, preserves fibrations,
weak equivalences and cofibrations with cofibrant domain in the inderleing category

dgMod,..



Proof. First of all, the operad P is admissible, indeed we use the cofibrant resolution
r: Eso — Com and consider the following pushout in Op, given by:

Asso — Eo

iw \La
f ,
Ass ——E
Where Assy, in the cofibrant replacement of Ass in Op,, and Ass,, — E is a cofi-
bration. Since the category Op, is left proper in the sense of [8, Theorem 3], we
have that a : Eoo — E;O is an equivalence. We denote by I the unit interval in the
category dgMod,, which is strictly coassociative. The opposite endomorphism op-

erad End“?(T) has a structure of E-algbra and Ass.-algebra which factors through
Ass i.e., we have two compatible maps of operads:

Assoo — E

ASSCLL:;O ]

2
End®?(I)

by the universality of the pushout, we have a map of operads E;O — End°?(I). This
means that the unit interval I has a structure of E_-colagebra [2, p.4]. Moreover,
we have a commutative diagram in Op,, given by

Ass—A>Ass®Ass&>P®E;o

[ Wd@r | ~

P ”l P ® Com =P

where the diagonal map A : Ass — Ass ® Ass is induced by the diagonals ¥, —

Y xX2,. Hence, the map P® E;O — P admits a section. It implies by [2 Proposition

4.1], that P is admissible and X-cofibrant. Since all objects in P —dgAlg,, are fibrant

and ¢* is a right Quillen adjoint, it preserves fibrations and weak equivalences.
Since P is an admissible operad, we have a Quillen adjunction

]
dgAlg, —= P — dgAlg,,
o

where the functor ¢* is identified to the forgetful functor. Moreover, the model
structure on P — dgAlg, is the transfered model structure from the cofibrantly
generated model structure dgAlg, via the adjunction ¢, ¢*. Suppose that f: A —
C is a cofibration in P — dgAlg,, such that A is cofibrant in dgMod,,. We factor this
map as a cofibration followed by a trivial fibration

At p_2. B
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in the category dgAlg,. By [, Lemma 4.1.16], we have an induced map of endo-
morphism operads (of diagrmas):

End{a_p_py = Endiap

which is a trivial fibration. Moreover, we have the following commutative diagram
in Opk
Ass —— End{A‘)p*}B}

T iw

P —>~ End{AﬁB}

Since Op,, is a model category, it implies that we have a lifting map of operads
P — Endgs_,p_, By}, hence i and p are maps of P — dgAlg. Therefore, we consider
the following commutative square in the category P — dgAlg,

_t.op
f T Nip

BB
the lifting map r exists since P — dgAlg,, is a model category, we conclude that
por =1id and ro f = ¢, which means that f is a retract of i, hence f is a cofibration
in dgAlg,. O

Remark 1.2. With the same notation as in[IT], if A is a cofibrant object in P—dgAlg;,
then A is a cofibrant object in dgMod,,. Indeed k — A is a cofibration in P —dgAlg,,,
by the previous lemma k — A is a cofibration in dgAlg,. Therefore, & — A is a
cofibration in dgMod,,.

2. SUSPENSION IN CGDA anD DGA
We denote the the operad E;O of the previous section by E, and k = Q.

2.1. Eco-DGA. We have a map of operads Ass — Com, which we factor as cofi-
bration followed by a trivial fibration.

Ass—— E,, — > Com

As a consequence, we have the following Quillen adjunctions

Aboo str
dgAlg;, —= E.dgAlg,, —— dgCAlg,
U U

These adjunctions have the following properties:

e The functors U and U o U and are the forgetful functors, they are fully
faithful cf 2.3 and

e The functors str, U form a Quillen equivalence since k = Q cf [6, Corollary
1.5]. The functor str is the strictification functor.

e The functors Abs,, U form a Quillen pair.

e The composition str o Aby, is the abelianization functor Ab : dgAlg, —
dgCAlg,.

e The functors str and Ab are idenpotent functors. cf 2.3 and
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The model categories dgCAlgy, and dgAlgy and E. dgAlg; are pointed model cate-
gories. It is natural to introduce the suspension functors in these categories.

Definition 2.1. Let C be any pointed model category, we denote the point by 1,
and let A € C, a suspension ¥ A is defined as hocolim(1 <— A — 1).

Proposition 2.2. Any map f: A — S in E..dgAlg,,, where S is in dgCAlg, factors
in a unique way as A — str(A) — S and the forgetful functor U dgCAlg;, —
EodgAlg, is fully faithful. Moreover, the unit of the adjunction v4 : A — str(A)
is a fibration.

Proof. Suppose that we have a map h : R — S in E,dgAlg; such that R and S are
objects in dgCAlg;.. By definition of the operad E., the map & has to be associative,
therefore h is a morphism in dgCAlg; since R and S are commutative differential
graded algebras. The forgetful functor U dgCAlg,, — E..dgAlg, is fully faithful,
this implies that str(S) = S for any S € dgCAlg,,. We have a commutative diagram
induced by the unit v of the adjunction (U, str) :

f

A—— S

uAl lus_id
str(f)

str(A) —"str(S) = S.

We conclude that f = str(f) o va. The surjectivity of the v4 follows from the
universal property of str(A). Hence, v4 is a fibration in E,dgAlg,. O

Proposition 2.3. Any map f : A — S in dgAlg,,, where S is in dgCAlg,, factorsin a
unique way as A — Ab(A) — S and the forgetful functor UoU : dgCAlg, — dgAlg,
is fully faithful. Moreover, the unit of the adjunction v4 : A — Ab(A) is a fibration.

Proof. The proof is the same as in O

Proposition 2.4. Suppose that we have a trivial cofibration k — k in E..dgAlgy,.
Then the universal map = : Ab(k) — str(k) is a trivial fibration and admits a
section in the category dgCAlg,,.

Proof. We consider the following commutative diagram in E.dgAlg,:

k4N>E

o

k = str(k) —— str(k).

The map k — str(k) is an equivalence since str is left Quillen functor, the same
thing holds for the abelianization functor i.e., k& — Ab(k) is a trivial fibration,
since k — k is a trivial cofibration in dgAlg, Il and Ab is a left Quillen functor.
On another hand the map k — str(k), which is a trivial fibration in E..dgAlg,
and hence in dgAlg;, can be factored (cf B3) as & — Ab(k) — str(k), where
Ab(k) — str(k) is a trivial fibration between cofibrant object in dgCAlg;,. It follows
that we have a retract [ : str(k) — Ab(k). O

Definition 2.5. The suspension functor in the pointed model categories dgCAlgy,
dgAlgy, and E..dgAlg;. are denoted by B, ¥ and B.
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Lemma 2.6. Suppose that A is a cofibrant object in ExdgAlgy, andi: A =k a
cofibration, then str(BooA) is a retract of Ab(XA) in the category dgCAlg, .

Proof. First of all if a map f is associative, commutative resp. E.,-map we put
an index f,, f. resp. foo, notice that by definition of the operad E., any E..-map
is a strictly associative map. Suppose that A is a cofibrant object in E..dgAlg,.
Consider the following commutative square:

3

A g
oo ha
" fe
" BoA

where YA is the (homotopy [[T)) pushout in dgAlg, and B, A is the (homotopy)
pushout in E,dgAlg,. By proposition and proposition [Z.3] we have a following
commutative square in dgAlg:

A B4

Ab(ZA) — 25 str[Boo A] = Blstr(A)].

By 24 we have an inclusion of commutative differential graded algebras I. :
str(k) — Ab(k) and after strictification we obtain on another (homotopy) pushout
square in dgCAlg,, given by

str(A)— str(k)C Ab(k)
ic fe
he
strg@><—ﬂ>@r<A>]
L el
Ab{i)¢ 2 Ab(s(4))

In order to prove that B[str(A)] is a retract of Ab(3(A)) it is sufficient to prove
that

Zeoheol. = fe.



By proposition and proposition [Z.3] the composition E..-maps

k e BoA str[Boo Al

can be factored in a unique way as
k —— Ab(k) — str(k) —=> str[BsoA] = Blstr(A)].

By unicity, a. = f.. On another hand, using the first poushout in E..dgAlg,,, the
previous composition k — str[By, A] is factored as

k0 SA o AB(SA) — 2 str[Boo Al
We summarize the previous remarks in the following commutative diagram:
E—"" Ab(k) — > str(k) —2> str[Boo A]

lid he lid
Y

k—— Ab(ZA) e str[Boo A]

by definition of h,, the doted map h. makes the left square commutative. Since
the whole square is commutative and the map pr is surjective we conclude that
Ze. 0 he = foom. Since the map I. : Str(k) — Ab(k) is a retract of = (Cf. 24) i.e.,
mol. = id, we conclude that x. o h.ol. = f.. Finally, by unicity of the pushout,
we deduce that the following composition

B[str(A)] —=> Ab(ZA) —=> Bstr(A)]
is identity. (I

3. MAIN RESULT AND APPLICATIONS

Theorem 3.1. For any R and S in dgCAlgy, the induced map by the forgetful
functor
OMapggcaig: (R, S) = QMapggaig: (R, 5),
has a retract, in particular
miMapggcaig: (B, S) = miMapggaig: (R, 5)
is injective ¥ © > 0.
Proof. Suppose that R is (cofibrant) object in E..dgAlg, and S any object in
dgCAlg;. By adjunction, we have that
OMapggcaig: (str(R),S) ~ Mapggcaig: (Bstr(R)], 5) (3.1)
~ Mapg_ ggnig: (B R, 5) (3.3)
~ OMapg_ ggnig: (R, 5). (3.4)
By Lemma [2.6] we have a retract
Mapggcaig: (B[str(R)], §) = Mapygcaig: (Ab(XR), S) — Mapggcarg: (Blstr(R)], 5).
Again by adjunction:
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We conclude that
OMape_ggaig: (R, 5) B OMapggajg- (12, 5) —— QMapg__ggaig: (12, 5)
is a retract. Hence, the forgetful functor U induces a injective map on homotopy
groups i.e.,
WiMapdgcmg; (str(R),S) ~ WiMapEoodgmg; (R,S) — WiMangmg; (R, S)

is injective V ¢ > 0. O

3.1. Rational homotopy theory. We give an application of our theorem [3.1] in
the context of rational homotopy theory. Let X be a simply connected rational
space such that m; X is finite dimensional Q-vector space for each i > 0. Let C*(X)
be the differential graded Q-algebra cochain associated to X which is a connective
EocdgAlg),. By Sullivan theorem m;. X' =~ m;Mapgscajg: (C*(X), Q). By Bl we have
that m;X is a sub Q-vector space of m;Mapggajg+ (12,.5). On another hand [1], since
C*(X) is connective, we have that for any ¢ > 1

miMapggarg: (C*(X), Q) = HH™'(C*(X), Q),

where HH* is the Hochschild cohomology. Since we have assumed finiteness condi-
tion on X, we have that

HH'(C*(X),Q) ~ HH;_,(C*(X), Q).

The functor C*(—, Q) : Top”” — EdgAlg, commutes with finite homotopy limits,
where Top is the category of simply connected spaces. Hence,

HH_11:(C*(X), Q) = HTHC™(X) @€ (x «x) Q) = HTHQX, Q).

We conclude that m; X is a sub Q-vector space of H'~1 (X, Q).
More generally by Block-Lazarev result [3] on rational homotopy theory and [IJ,
we have an injective map of Q-vector spaces

AQTI(CH(X), C*(Y)) = HH™H(C* (X), C*(Y)),

where the C*(X)-(bi)modules structure on C*(Y) is given by C*(X) — Q —
C*(Y), and AQ" is the André-Quillen cohomology. We also assume that X and YV’
are simply connected and ¢ > 1.

More generally,

7Ti1\/[aJpandgAlgk (Ra S) = AQil (Rv S) - HHiiJrl(Ra S) = 7Til\/[apdgAlgk (Rv S)

is an injective map of Q-vector spaces for all i > 1 and any augmented E..-
differential graded connective Q-algebras R and S, where the action of S on R
is given by S — Q — R.

Acknowledgement : I'm grateful to Benoit Fresse for his nice explanation of
Lemma [L.I] the key point of the proof is due to him.
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