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Abstract. In this article, we define two equivalent new model structures on

sCat the category of simplicial objects in Cat. Then we construct the cor-
responding stable model category of spectra SpN(sCat) and make some links

with the algebraic K-theory via the mapping space.

Introduction and main results

We start by introducing two Quillen equivalent new model structure on sCat
(i.e., [∆op,Cat]), the category of simplicial objects in Cat, we will often call them
simplicial categories. It is a discrete version of the diagonal model structure defined
in [[1], theorem 1.2], but we will go further in our investigations, mainly
the stabilization process, as we will see later. Equipped with these new model
structures, the mapping space map is closely related to the algebraic K-theory. In
order to get a full analogy, we construct the stable category of spectra SpN(sCat)
following ideas of [7]. Then the mapping space mapSpN(sCat)(Σ∞S0,C••) is an
infinity loop space, where C•• is a fibrant object in the model category SpN(sCat).
Roughly speaking C•• is a categorical Ω-spectra.
We recall, that the K-theory of an exact category or more generally a Waldhausen
category with isomorphisms produces an Ω-spectra. Let’s C be a Waldhausen
category, then the Waldhausen ”suspension” S•C, is a simplicial category and the
K-theory spectra is given by the following sequence [8]:

{ΩdiagN• iso S•C,diagN• iso S•C, . . . ,diagN• iso Sn•C, . . . }
which is an Ω-spectra i.e., a fibrant object in the stable model category SpN(sSet∗).
In section 1, we construct the diagonal model structure on sCat. We prove the
following theorem:
Theorem A: (diagonal model structure 1.4) The category of simplicial categories
sCat is a cofibrantly generated model category where

(1) a morphism f : C• → D• is a weak equivalence (resp. fibration) if and only
if diagN•iso(f) is a weak equivalence (resp. fibration) in sSet.

(2) The generating (acyclic) cofibrations in sCat are given by the image of
generating (acyclic) cofibration in sSet via the fonctor π•d∗.

In section 2, we prove that the new model structure on sCat is cellular and
proper.
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Theorem B: (additional properties2.14,2.8) The diagonal model structure on sCat
is left proper and cellular.

In section 3, we equip the category of simplicial categories with a new model cat-
egory equivalent to the diagonal one (same weak equivalences), but having the
advantage to be well tensored and cotensored with respect to the model
category sSet. We establish the following theorem:

Theorem C: (W -model structure 3.6) There exists a cofibrantly generated model
structure on sCat induced by the adjunction

sSet
π• Dec//

sCat
WN•iso

oo

Moreover, the W -model structure on sCat is Quillen equivalent to the diagonal
model structure, left proper and cellular.

In section 4, construct and explicit suspension functor and a loop functor in the
pointed W -model category sCat.

Theorem D: (compatible (co)tensorization) 4.5 If X• is a pointed simplicial set,
then the functor

− ∧X• : sCat∗ → sCat∗

is a left Quillen functor, where sCat is equipped with W -model structure. More-
over, the functor − ∧X• has a right Quillen adjoint.

In the final section 5, we prove our main theorem, roughly speaking we construct
a the stable model category of spectra SpN(sCat∗) and relate the mapping space
mapSpN(sCat∗) to the algebraic K-theory:

Theorem E: (stabilization 5.4) There is a cofibrantly generated stable model cat-
egory structure on SpN(sCat∗,Σ).

As consequence of the last theorem is that any fibrant object D•• in SpN(sCat∗,Σ)
has the property that ΩdiagN•isoDn+1

• is equivalent to diagN•isoDn
• , It means that

Dn+1
• looks like S•Dn

• , the Whaldhausen suspension of Dn
• . We express the right

formulation in the following corollary:

Corollary F: (relation to algebraic K-theory 5.13 ) For any fibrant object D••
in SpN(sCat∗,Σ), we have the following isomorphisms in Ho(sSet):

(1) mapsCat∗(ΣS
0,Dn+1

• ) 'mapsCat∗(S
0,ΩDn+1

• ) ' diagN•isoΩDn+1
• .

(2) mapsCat∗(ΣS
0,Dn+1

• ) ' ΩdiagN•isoDn+1
• .

(3) mapsCat∗(ΣS
0,Dn+1

• ) 'mapsCat∗(S
0,Dn

• ) ' diagN•isoDn
• .
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The appendix is about some easy facts about small objects in different cate-
gories. We made an effort to treat all technical details in order to establish our
results without ambiguity.

Acknowledgment: I would like to express my gratitude to my former super-
visor, Professor Kathryn Hess for all here corrections and suggestions.

1. Diagonal model structures on sCat

1.1. framework.

Notation 1.1. (1) Objects of the category Cat are denoted by A,B,C, . . .
(2) Objects of the category sSet are denoted by X•, Y•, Z• . . . or simply by

X,Y, Z . . . if there is no confusion.
(3) Objects of sCat will be denoted by A•,B•,C• . . .
(4) Generic categories by A,B, C . . .
(5) Finally objects of the category of (non symmetric) spectra SpN(sCat∗) are

denoted by A••,B
•
•,C

•
• . . .

In all what will follow, we assume that the category of small Cat is equipped
with Joyal-Therny model structure. Roughly speaking, the weak equivalences are
equivalences of categories, the cofibrations are functors injective on the set of ob-
jects and the fibrations are Grothendieck iso-fibrations. This model structure is
in fact simplicial monoidal close cofibrantly generated model stucture, where all
object are fibrant and cofibrant and consequently proper but not cellular.
We use the standard Quillen model structure on the category of simplicial sets
sSet. The weak equivalences are morphisms which induce isomorphisms on homo-
topy groups, cofibrantions are monomorphisms and fibrations are Kan fibrations.
Equipped with this model structure, the category of simplicial sets is simplicial
monoidal closed cofibrantly generated model category, where all objects are cofi-
brant and Kan complexes are the fibrant objects. This model structure is proper
and cellular.
In order to construct a model structure on the category of simplicial categories
sCat = [∆op,Cat] we use the fundamental lemma of transferring model structure
via an adjunction.

Lemma 1.2. [[9], proposition 3.4.1] Let M be a cofibrantly generated model struc-
ture and let

M
G //
C

F
oo

be an adjunction and define a class of weak equivalences and fibrations as follow:
(1) WE the class of morphisms in C such that there image under F is a weak

equivalence in M.
(2) Fib the class of morphisms in C such that there image under F is a fibration

in M.
Suppose that the following condition are verified:

(1) The domains of G(i) are small relatively to G(I) for all i ∈ I and the
domains of G(j) are small relatively to G(J) for all j ∈ J.
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(2) The functor F commutes with directed colimits i.e.,

F colim(λ→ C) = colimF (λ→ C).
(3) Any transfinite composition of weak equivalences in M is again a weak

equivalence.
(4) The pushout of G(j) along any morphism f in C is an element of WE.

Then C form is model category, where weak equivalences (resp. fibrations) are WE
(resp.Fib), moreover C is cofibrantly generated, where the generating cofibration are
G(I) and generating trivial cofibrations are G(J).

1.2. Diagonal model structure.

Definition 1.3. The π : sSet → Cat which associate to a simplicial set K• its
fundamental groupoid π(K•), where the objects are 0-simplicies K0, and the gen-
erating isomorphisms are t : d1x→ d0x for each 1-simplex t in K1. The generators
are submitted to the relation d0l ◦ d2l = d1l for all 2-simplices l in K2.

The functor π admits a right adjoint N•iso which associates to C the nerve of
the underlying groupoid isoC.

The previous adjunction

sSet
π //

Cat
N•iso
oo

extends naturally to an adjunction of bisimplicial sets and the category of sim-
plicial objects in Cat.

sSet2
π• //

sCat
N•iso
oo

where π•(K•,•)n = π(X•,n) and N•iso is applied level-wise.
Moerdijk proved that there is a model structure on the category of bisimpli-

cial sets Quillen equivalent to the standard model structure on simplicial sets ([4],
chapter 4, section 3). This model structure is obtained by the following adjunction:

sSet
d∗ //

sSet2.
diag
oo

Theorem 1.4. The category of simplicial categories sCat is a cofibrantly generated
model category where

(1) a morphism f : C• → D• is a weak equivalence (resp. fibration) if and only
if diagN•iso(f) is a weak equivalence (resp. fibration) in sSet.

(2) The generating (acyclic) cofibrations in sCat are given by the image of
generating (acyclic) cofibration in sSet via the fonctor π•d∗.

Lemma 1.5. If j is an generating acyclic cofibration in sSet2, then π•(j) is an
equivalence in sCat.

Proof. The generating acyclic cofibrations in sSet2 equipped with Moerdijk’s model
structure are given by

d∗Λni → d∗∆n = ∆n,n, i ∈ {0, 1, . . . , n}.
More precisely: ⊔

β∈Λn
i

Cβ →
⊔

β∈∆n

∆n,
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where Cβ is a contractible subcomplex of Λni . Consider the following commutative
diagram:

⊔
β∈Λn

i
Cβ

pr //

d∗j

��

⊔
β∈Λn

i
∗

j∼
��⊔

β∈∆n ∆n pr //
⊔
β∈∆n ∗

The projections are weak equivalences of simplicial sets degree by degree, and so
diagonal equivalences. Obviously, we have also that j is a diagonal equivalence. We
conclude that d∗j is a diagonal equivalence. We Apply to the previous diagram the
functor N•π: ⊔

β∈Λn
i

N•πCβ
pr //

N•π•d∗j

��

⊔
β∈Λn

i
∗

j∼
��⊔

β∈∆n N•π∆n pr //
⊔
β∈∆n ∗

Since Cβ is a connected subcomplex of Λni , the canonical projection πCβ → ∗ is an
equivalence of categories and induces an equivalence of nerves. Consequently, the
horizontal arrows are equivalence degree wise, and so diagonal equivalences. We
conclude that N•π•d∗(j) is also a diagonal equivalence. Finally, π•(j) is a weak
equivalence in sCat. �

Definition 1.6. Let M be a category with a class of weak equivalences. A com-
mutative square

A //

��

C

��
B // D

in M is homotopically cocartesian if the universal morphism B
⊔
A C → D is a

weak equivalence in M .

Lemma 1.7. Let f : A → B a fully faithful inclusion of groupoids. Consider the
following pushout diagram in Cat :

A //

f

��

C

��
B // D = B tA C.

Then the two diagrams

A = isoA //

isof

��

isoC

��

N•isoA = N•isoA //

N•isof

��

N•isoC

��
B = isoB // isoD N•isoB = N•isoB // N•isoD

are homotopically cocartesian in Cat and respectively in sSet.
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Proof. The hypothesis on the groupoids A and B imply that we can decompose in
B1 tB2 such f : A→ B1 is a trivial cofibration in Cat. So, D = (CtA B1)tB2.
Lets define D

′
= B1 tA C, then D = D

′ tB2. The functor C → C tA B1 is an
equivalence of categories, injective on objects. It follows that isoC→ iso(CtA B1)
is a weak equivalence, consequently, the induced functor isoCtAB1 → iso(CtAB1)
is a weak equivalence in Cat. Finally the second induced functor

isoC tA B = isoC tA B1 tB2 → iso(C tA B1 tB2) = isoD

is an equivalence of categories.
Now, we apply the functor N•iso to the initial diagram:

N•A //

��

N•isoC

s

�� l

��

N•B //

--

N•B tN•A N•isoC
t

((
N•isoD

We observe that N•B tN•A N•isoC = (N•B1 tN•A N•isoC) t N•B2, and N•A →
N•B1 is a trivial cofibration by definition of B1. So, the morphism N•isoC →
N•B1 tN•A N•isoC is a weak equivalence, since sSet is a model category. On the
other hand, N•isoC → N•iso(B1 tA C) is a weak equivalence in sSet, because
it is the nerve of an equivalence of categories. Consequently, the induced map
N•B1 tN•A N•isoC→ N•iso(B1 tA C) is a weak equivalence of simplicial sets. We
conclude that morphism of simplicial sets

t : N•B tN•A N•isoC = N•B2 tN•B1 tN•A N•isoC→ N•B2 tN•D
′

= N•isoD

is a weak equivalence of simplicial sets. �

Lemma 1.8. Let j : A→ B be a generating acyclic cofibration in sCat. Then the
pushout of j a long any morphism A→ C is a weak equivalence.

Proof. First of all, We remark that any acyclic generating cofibration in sCat verify
degree by degree the hypothesis of lemma 1.7. Consider the following pushout
sCat :

A //

j

��

C

j
′

��
B // D

Applying the functor diagN•iso to the precedent pushout, we obtain a commu-
tative diagram in sSet:
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diagN•A //

diagN•iso(j)

��

diagN•isoC

s

�� l

  

diagN•B //

--

diag(N•B tN•A N•isoC)
diag(t)

))
diagN•isoD,

since the colimits in sCat are computed degree wise. Applying lemma 1.7 degree
by degree, we have that t is a degree wise equivalence in sSet2, and so diag(t) is
a weak equivalence in sSet. On an other hand, diagN•iso(j) is a cofibration of
simplicial sets, since N•iso(j) is a degree wise monomorphism and it is a diagonal
weak equivalence by 1.5. Consequently, s is a weak equivalence. By the property 2
out of 3, we conclude that l is a weak equivalence.

�

Finally, we can prove that sCat is a cofibrantly generated model category

Proof of the Theorem 1.4. The lemma 1.2 permits to conclude that sCat is a
cofibrantly generated model category since,

(1) The hypothesis (1) is a consequence of A.4.
(2) The hypothesis (2) is a consequence of A.3.
(3) The hypothesis (3) is a consequence of the fact that in sSet a transfinite

composition of weak equivalences is again a weak equivalence.
(4) The hypothesis (4) is a consequence of 1.8.

�

2. Additional properties of the diagonal model structure on sCat

In this section, we will establish some properties of the model structure in sCat,
such that left and right properness and cellularity.

2.1. Cofibrations in sCat. In this paragraph, we describe some properties of
cofibrations in sCat in order to prove that new model category is left proper. The
simplicial set ∂∆n is generated by (dien avec 0 ≤ i ≤ n where en is the only
non degenerated n−simplex of ∆n. The bisimplicial set d∗∂∆n is generated by
(dien, dien). Following the same strategy as in ([4], chapter 4, 3.3), d∗∂∆n can be
described as ⊔

σ∈∂∆n

Cσ,

where the simplicial set Cσ is generated by the faces dien which contain σ. Notice
that the number of faces with this property is strictly less than n+ 1, this implies
that Cσ → ∗ is a weak equivalence. Moreover, π(Cσ) is a groupoid equivalent to
the trivial groupoid ∗, more precisely, between to objects of the category π(Cσ)
there is exactly one isomorphism.

Now, we give the fundamental property of cofibrations in sCat

Lemma 2.1. The cofibrations in sCat are inclusions of categories i.e., the cofi-
brations are injective on objects and morphisms.
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Proof. Let i : A• → B• be a generating cofibration in sCat. Degreewise, the gener-
ating cofibrations in sCat have the property that they are inclusions of categories.
Moreover, we have a decomposition of Bn in B1

n tB2
n such that in : An → B1

n is
a trivial cofibration in Cat. But all objects in Cat are fibrant, this implies that
we have a retraction. Consequently the pushout of i : A• → B• along any functor
f : A• → C• is an inclusion degree by degree, since the colimits in sCat are com-
puted degreewise. The transfinite composition of inclusions in sCat is again an
inclusion and the I−Cell are inclusion of categories. By the same way the retracts
of I − Cell are also inclusion of categories. We conclude that cofibrations in sCat
are inclusions of categories. �

Lemma 2.2. Let i : A• → B• be a cofibration in sCat, and consider the following
pushout diagram in sCat:

A• //

i

��

C•

��
B• // D•.

Then the functor N•iso sends this pushout to a homotopically cocartesian square in
sSet2 equipped with projective model structure.

Proof. The pushouts in sCat are computed degreewise. The cofibrations in sCat
verify the same hypothesis of 1.7 degreewise. �

Remark 2.3. Consider a commutative diagram in a category M:

A //

f

��

C

��

// C
′

��
B // D // D

′

where both squares are pushouts. Then the following square

A //

f

��

C
′

��
B // D

′

is also a pushout diagram in M.

Lemma 2.4. With the same notations as in 2.3, and A → B verifying the same
hypothesis as in 1.7, then the natural morphisms

N•B tN•isoA N•isoC
′
→ N•D tN•isoC N•isoC

′

and
N•isoD tN•isoC N•isoC

′
→ N•isoD

′

are weak equivalences in sSet.

Proof. By 1.7, the morphism N•BtN•AN•isoC→ N•isoD is an equivalence. More-
over N•isoC → N•B tN•A N•isoC and the morphism N•isoC → N•isoD are cofi-
brations in sSet. Since sSet is left proper, we conclude that

(N•B tN•A N•isoC) tN•isoC N•isoC
′
→ N•isoD tN•isoC N•isoC

′
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is a weak equivalence. to show the other equivalence, it is sufficient to remark that

(N•B tN•A N•isoC) tN•isoC N•isoC
′

= N•B tN•A N•isoC
′
→ N•isoD

′

is an equivalence by 1.7 and by the property ”2 out of 3”

N•isoD tN•isoC N•isoC
′
→ N•isoD

′

is a weak equivalence. �

Corollary 2.5. The simplicial version of lemma 2.4 if we replace f : A → B by
i : A• → B• in sCat verifying the same hypothesis degrewise, then

N•B• tN•A• N•isoC
′

• → N•isoD• tN•isoC• N•isoC
′

•

and
N•isoD• tN•isoC• N•isoC

′

• → N•isoD
′

•

are degreewise weak equivalences.

Proof. Apply 2.4 degree by degree. �

2.2. Properness of sCat. We prove that sCat equipped with the model structure
of 1.4 is left proper.

Lemma 2.6. Let i : A• → B• an element of I − Cell in sCat. The functor
diagN•iso sends the following pushout in sCat:

A• //

i

��

C•

��
B• // D•

to a homotopically cocartesian square in sSet.

Proof. First of all, A• → B• is a transfinite composition of cofibrations of the form

A• = C0 → . . .As
• → As+1

• → As+2 → . . .

We denote As
• tA• C• by Cs

•. By the corollary 2.5

N•isoAs
• tN•isoA• N•isoC• → N•isoCs

•

is a weak equivalence, moreover, N•isoCs
• → N•isoCs+1

• is an inclusion of bisimpli-
cial stes. Knowing that N•iso commutes with directed colimits, and that
diagN•isoCs

• → diagN•isoCs+1
• is a cofibration in sSet, we conclude that :

diag(N•isoB• tN•isoA• N•isoC•)→ diagN•isoD•

is an equivalence in sSet �

Corollary 2.7. Let i : A
′

• → B
′

• be any cofibration in sCat. The functor diagN•iso
sends the following pushout in sCat:

A
′

•
//

i

��

C•

��
B
′

•
// D•

to a homotopy cocartesian square.
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Proof. The cofibration i
′

: A
′

• → B
′

• is a retract of a I−cell cofibration i : A• → B•.
We denote B• tA• C• = M•, and B

′

• tA′ C• = D•. There is an induced retract:

N•isoB
′

• tN•isoA
′
•

N•isoC• //

��

N•isoB• tN•isoA• N•isoC•

t

��

// N•isoB
′

• tN•isoA
′
•

N•isoC•

g

��
N•isoD• // N•isoM• // N•isoD•

By lemma 2.6, we have that diag(t) is an equivalence, so diag(g) is also an equiva-
lence in sSet.

�

Corollary 2.8. The model category sCat is left proper.

Proof. Let A• → B• be a cofibration and let f : A• → C• be an equivalence in
sCat. It is sufficient to consider the following pushout :

diagN•isoA•
f

∼
//

i

��

diagN•isoC•

s

�� l

""

diagN•isoB•
g //

h

..

diag(N•isoB• tN•isoA• N•isoC•)
t

**
diagN•isoD•

We have that iis a cofibration in sSet since N•isoA→ N•isoB is injective in sSet2.
But f is an equivalence and sSet is proper, this implies that g is an equivalence. By
the corollary 2.7, t is a weak equivalence, this implies that h is a weak equivalence
and finally that sCat is left proper. �

Lemma 2.9. The model category sCat is right proper.

Proof. This fact is much more easier that the left properness. Consider the pullback
diagram in sCat:

C• ×A D•
i //

��

C•

f
����

D• j

∼ // A•

Our goal is to show that i is a weak equivalence. Applying the functor diag N•iso
which commutes with limits, we obtain a pullback diagram in sSet, such that
diagN•iso(f) is a fibration by definition of model structure on sCat . Since sSet
is right proper, we conclude that diag N•iso(i) is also a weak equivalence, and so
sCat is right proper. �

2.3. Cellularity of sCat. This paragraph is an other step of our comprehension
of cofibrations in the model category sCat. We will prove the cellularity prop-
erty. This step is crucial in order to consider the left Bousfield localization and
stabilization of the model category sCat.

Definition 2.10. A cofibrantly generated model category is cellular if it verifies
the following conditions:
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(1) the domains and codomains of I are compact (cf [5] 11.4.1);
(2) the domain of the generating acyclic cofibrations J are small with respect

to I (cf [5] 10.5.12); and
(3) the cofibrations are effective monomorphisms (cf [5] 10.9.1).

Lemma 2.11. The cofibrations and acyclic cofibrations of sCat verify the first
hypothesis of the definition 2.10.

Proof. Let C• a domain (codomain) of an element in I. By definition C• has the
form π d∗X•, where d∗ is the left adjoint to diag. Let f : D• → D

′

• be a I-cell
complex.We have to show that any morphism g : C• → D

′

• is factorized through
a sub complex of f for a certain cardinal γ. The morphism f is a transfinite
composition of elements of I− cell which are inclusions categories degree by degree

D• → D1
• . . .D

β
• → Dβ+1

• · · · → D
′

•.

The factorization g by a sub complex of f is equivalent to factorization of the
adjoint of g, denoted by, g

′
: d∗X• → N•isoD

′

• by a sub complex of

N•isoD• → N•isoD1
• . . .N•isoDβ

• → N•isoDβ+1
• · · · → N•isoD

′

•

By the same argument, a factorization of g
′

is equivalent to factorization of the
adjoint map g

′′
: X• → diagN•isoD

′

• by a sub complexe

diagN•isoD• → diagN•isoD1
• . . . diagN•isoDβ

• → diagN•isoDβ+1
• · · · → diagN•isoD

′

•

which is a transfinite composition of monomorphisms in sSet, since by 2.1 the
cofibrations in sCat are inclusions of categories degree by degree. But the objects
∆n and ∂∆n are compact in sSet. We conclude that g has a factorization through
a sub complex of f .

�

Lemma 2.12. The cofibrations and acyclic cofibrations in sCat the second hypoth-
esis of the definition 2.10.

Proof. Let π d∗X• be a domain of an element of J. We have to show that this
domain is small relatively to I-cell for a certain cardinal λ. We have the following
isomorphisms:

colimβ<λhomsCat(πd∗X•,Dβ
• )→ colimβ<λhomsSet(X•,diagN•isoDβ

• )

colimβ<λhomsSet(X•,diagN•isoDβ
• )→ homsSet(X•,diagN•iso colimβ<λDβ

• )

The first isomorphism is by adjunction, the second isomorphism is a consequence
of the fact that all object in sSet are small for a λ (cf [6] lemme 3.1.1), and the
functor diag commutes with colimits and that the functor N•iso commutes with
directed colimits. �

Lemma 2.13. The cofibrations in sCat are effective monomorphisms.

Proof. Let C•
� � i // D• be a cofibration in sCat (in particular an inclusion of

categories). Now, we compute the equalizer of the following diagram:

D•
//// D•

⊔
C•

D•
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where both morphisms are inclusion of categories coming from the pushout diagram:

C•
� � i //

� _

i

��

D•� _
i1
��

D•
� �

i2
// D•

⊔
C•

D•.

We affirm that the equalizer is given exactly by

C•
i // D•

//// D•
⊔

C•
D•

First of all, it is a commutative diagram. Suppose that C
′

• is an other condidat for
the equalizer. Since the functor Ob : sCat→ sSet commutes with limits and col-
imits, there exists a unique morphism t making the following diagram commuting:

ObC
′

•

t

��

Ob(F )

##G
GGGGGGGG

ObC•
Ob(i) // ObD•

//// ObD•
⊔

ObC•
ObD•

In fact, the cofibrations in sCat are injective on objects 2.1, and sSet is cellular [5].
Suppose now γ a morphism in teh category C

′

• such thati1F (γ) = i2F (γ). Since
i1 : C• → D•

⊔
C•

D• and i2 : C• → D•
⊔

C•
D• are injections of categories, it

implies that F (γ) is, in fact, a morphism in C•. We conclude that any morphism F :
C
′

• → D• in sCat such thati1F = i2F has a unique factorization as a composition

C
′

• → C• → D•.

�

Corollary 2.14. Equipped with the model structure 1.4, The category sCat is
cellular.

Remark 2.15. At this stage, we should remark that the model category on Cat
constructed by A. Joyal and refined by C. Rezk is not a cellular. In order to show
the non cellularity of Cat, we consider the following example where C → D is a
cofibration in Cat i.e.,

a // // b

and D the category with two objects

a→ b

In this case, the equalizer

D // // D ∪C D

is D and not C, since D ∪C D = D.

More over the suspension functor in Cat∗ is trivial (equivalent to the identity
functor). For all this raisons, it is not interesting to consider the category of spectra
SpN(Cat∗).
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3. The W -Model structure on sCat

The goal of this section is to introduce a second new model structure on the
category sCat Quillen equivalent to the previous. The second new model structure
has all the good properties (proper, cellular) and more over it is (co)tensored over
the model category of simplicial sets in a compatible way with the model struc-
ture. Our main inspiration come from the technical artical [2]. Roughly speaking,
the authors use a new adjunction between sSet and sSet2 in order to transfer
the model structre to the category of bisimplicial sets, it is denoted by W -Model
structure. The class of weak equivalences are the same as in the Moerdijk model
structure on sSet2 but there is less cofibration and more fibrations. The left adjoint
functor Dec : sSet → sSet2 used for defining W -Model structure is cartesian i.e.,
Dec(X• × Y•) = Dec(X•) ×Dec(Y•). This observation is crucial for our propose.
We will explain the consequence of such observation for the W -Model structure on
sCat.

Definition 3.1. The Illusie functor Dec : sSet→ sSet2 is defined for all simplicial
sets Y• byDec(Y•)p,q = Yp+q+1 ∀p, q . The horizontal faces are given by dhi =
di : Yp+q+1 → Yp+q, in the same way the degeneracies are shi = si. The vertical
faces are given by dvj = dp+1+j : Yp+1+q → Yp+q and the vertical degeneracies
aresvj = sp+1+j .

Lemma 3.2. The functor Dec has a right adjoint W : sSet2 → sSet defined as
follow:

W (X)n = {(x0,n, . . . , xn,0) ∈
n∏
p=0

Xp,n−p| dv0xp,n−p = dhp+1xp+1,n−p−1, 0 ≤ p < n}

For the definition of degeneracies and faces of the simplicial set W (X) we refer
to [2].

Corollary 3.3. The functor W commutes with directed colimites.

Proof. Let colimλX be a directed colimit of objets in sSet2, the equality

W (colimλX)n = colimλW (X)n

is a consequence of the fact that a finite products commutes with directed colimits
in sSet2. �

Theorem 3.4. [2] The category of bisimplicial sets sSet2 admits a structure of
cofibrantly generated model category, denoted by W -structure, where a morphism
f is a fibration (weak equivalence) if W (f) is a fibration (weak equivalence) of
simplicial sets. Moreover:

(1) any Moerdijk fibration is a W -fibration;
(2) any W -cofibration is a Moerdijk-cofibration;
(3) a morphism of bisimplicial sets is a Moerdijk weak equivalence (i.e., diago-

nal equivalence) if and only if it is a W -equivalence.

Moreover, the new W -model structure on bisimplicial sets is cofibrantly gener-
ated, where

(1) the generating cofibrations are given by Dec ∂∆n → Dec ∆n, n ∈ N.
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(2) the generating acyclic cofibrations are given by Dec Λni → Dec ∆n, n ∈
N, 0 ≤ i ≤ n.

Remark 3.5. The W -structure and Moerdijk model structure on bisimplicial sets
are Quillen equivalente, the equivalence is given by the functor identity. Since the
functor Dec is cartesian, the W -model structure on simplicial sets is (co)tensored
(in a compatible way) over the model category sSet.

Theorem 3.6. There exists a W -model structure on sCat equivalent to the diag-
onal model structure 1.4 induced by the adjunction

sSet
π• Dec//

sCat
WN•iso

oo

(1) A morphism f : C• → D• is a weak equivalence (resp. fibration) if
WN•iso(f) is a weak equivalence (resp. fibration) of simplicial sets.

(2) The generating cofibrations are given by π•Dec(∂∆n)→ π•Dec(∆n) for all
n ∈ N.

(3) The generating acyclic cofibrations are given by π•Dec(Λni ) → π•Dec(∆n)
for all n ∈ N and 0 ≤ i ≤ n.

Moreover, the W -model structure on sCat is left proper and cellular.

Proof. The generating cofibrations are given by π•Dec ∂∆n → π•Dec ∆n, n ∈ N.
The generating acyclic cofibrations are given by π•Dec Λni → π•Dec ∆n, n ∈
N, 0 ≤ i ≤ n. In order to show that this choice of (acyclic) cofibrations determines
a model structure, it is sufficient to show the hypothesis (2) and (4) from lemma
1.2. The point (2) is a direct consequence of 3.3. Let j : Dec Λni → Dec ∆n

be generating acyclic cofibration in W -model structure sSet2. We know by 3.4
that j is an acyclic cofibration in the Moerdijk diagonal model structure on sSet2.
Consequently, π•(j) is an acyclic cofibration in the diagonal model structure on
sCat 1.4. So, the pushout of π•(j) along a morphism f : π•Dec Λni → C• in sCat:

π•Dec Λni
f //

π•(j)

��

C•

��
π•Dec ∆n // D•

is a weak diagonal equivalence i.e., diagN•isoC• → diagN•isoD• is a weak equiva-
lence in sSet. By 3.4, we conclude that

WN•isoC• →WN•isoD•

is an equivalence in sSet.
To show that W -model structure on sCat is left proper and cellular, we remark
that cofibrations in W -model structure on sCat are also cofibrations in the diag-
onal model structre on sCat. Consequently, we have less cofibrations in W -model
structure sCat than in the diagonal model structure on sCat, but in the same time
the class of weak equivalences are the same in both model structures, it implies that
W -model structure on sCat is left proper, cellular and Quillen equivalent to 1.4.

�
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Remark 3.7. We should remark at this stage that the W -model structure on sCat
is deduced form the diagonal model structure on sCat. It seems that a direct proof
of W -model structure is quite hard. The following section we will see why it is
better to consider W -structure than the diagonal one.

Remark 3.8. The diagonal model structre (resp. the W -model structure) on sCat
can be restricted in a natural way to the diagonal model structure (resp. W -model
structure) on sGrp, the category of simplicial groupoids.

4. Pointed model structure sCat∗

The main goal of this section is to define the suspension and loop functor in the
model category sCat. In order to construct such functors we need a pointed model
version of sCat. We denote the pointed category by sCat∗ or by ∗ ↓ sCat ([6],
chapter 6).

Definition 4.1. A pointed category C is equipped with a functor ∗ → C where ∗
is the terminal object in sCat.

Recall the the tensorization of Cat by sSet is defined by

X• ⊗C = πX• ×C

similarly, the cotensorization is given by

CX• = HOMCat(πX•,C)

We construct a (co)tensorization of sCat∗ by sSet∗ following the same proce-
dures as before but in more general context. Suppose that we have an adjunction
between sSet and sCat such that the left adjoint is cartesian ρ : sSet→ sCat i.e.,
ρ(X•)×ρ(Y•) = ρ(X•×Y•). The tonsororization is defined by C•⊗ρX• = C×ρX•
and the cotensorization by CX = HOMsCat(ρX•,C•).

Definition 4.2. Let C• an object of sCat∗. In order to construct the tensorization,

−�− : sCat∗ × sSet→ sCat∗

we start by defining the tensor product with ∆n then for all simplicial sets sSet by
left Kan extension. In particular, C• �∆n is given by the pushout:

∗ ⊗ρ ∆n //

��

C• ⊗ρ ∆n

��
∗ // C• �ρ ∆n.

Definition 4.3. The smash product − ∧ρ − : sSet∗ × sCat∗ → sCat∗ is defined
first for ∆n

+ by the formula

C• ∧ρ ∆n
+ = C• �ρ ∆n

and then extended to sSet∗ by left Kan extension.

Lemma 4.4. The functor −�ρX• : sCat∗ → sCat∗ admits a right adjoint which
is denoted by (−)X• : sCat∗ → sCat∗
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Proof. First of all, we construct the adjoint for −�ρ ∆n. The functor

HOMsCat(ρ∆n,−) : sCat∗ → sCat∗

which is the right adjoint to the cartesian product for sCat, it sends a pointed
category C• to a pointed category HOMsCat(ρ∆n,C•) , where the point is given
by the constant functor 0 : ρ∆n → C•. We have to verify that it is an adjoint of
−�ρ ∆n in sCat∗. Giving a (simplicial) functor f : C• �ρ ∆n → D• is equivalent
to give a functor f̃ : C• × ρ∆n → D• which sends the sub category ∗ ⊗ρ ∆n to
the base point in D•, by the same way, it is equivalent to give a pointed functor
g : C• → HOMsCat(ρ∆n,D•) := D∆n

• . So, in order to prove the adjunction for
any simplicial set X•, we remark that

C• �ρ (colim∆n→X•∆
n) = colim∆n→X•(C• �ρ ∆n).

�

Taking our inspiration from sSet∗ we construct a new model structure on sCat∗
using the adjunction induced by the forgetful functor and left adjoint which adds
a base point. We will show that the new model structure on sCat∗ is (co)tensored
over the model category of simplicial sets sSet∗. The adjunction

sCat
(−)+ //

sCat∗
U
oo

defines a model structure on sCat∗, the weak equivalences and fibrations are simply
those in the underlying model category sCat. For more details see [6].

In this paragraph, we show that for any pointed simplicial set X•, the functors
− ∧ X• and (−)X form a Quillen pair. First of all, that a simplicial pointed set
p : ∆0 → X by the following pushout diagram:

∆0
+

p+ //

��

X+

��
∗ // X

Theorem 4.5. If X• is a pointed simplicial set, then the functor

− ∧X• : sCat∗ → sCat∗

is a left Quillen functor, where sCat is equipped with W -model structure. Moreover,
the functor − ∧X• has a right Quillen adjoint.

Proof. First, we simplify our notation, a simplicial set X• will be denoted by X.
Let C• an object of sCat, then C•+ ∧ X+ = (C• ⊗ X)+. In order to show that
X ∧− is a left Quillen functor, it is sufficient to show that the image of generating
(acyclic) of sCat∗ are (acyclic) cofibrations. We start with the case where X has
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a disjoint base point. Consider the following pushout diagram:

π•Dec∆0
+ ∧ π•DecA+

//

��

π•DecX+ ∧ π•DecA+

��

!!

π•Dec∆0
+ ∧ π•DecB+

//

--

P

**
πDecX+ ∧ π•DecB+

where A→ B is an generating (acyclic) cofibration in sSet. The previous diagram
is equivalent to the pushout diagram:

π•Dec(∆0 ×A)+
� � //

� _

��

π•Dec(X ×A)+� _

��

��

π•Dec(∆0 ×B)+
� � //

--

P• � v

))
π•Dec(X ×B)+

We have P• = π•Dec(∆0×Bt∆×AX×A)+ since π• Dec and (−)∗ commuteswith
colimits, and the unique morphism π•Dec(∆0 × B t∆0×A X × A)+ → πDec(X ×
B)+ is obviously an (acyclic) cofibration in sCat∗ since sSet is monoidal model
category, and π•, (−)+, Dec are left Quillen functors. Now, we have to show that
π•Dec(X ∧ A+) → π•Dec(X ∧ B+) is a cofibration (acyclic cofibration) in sCat∗
i.e., has a lifting property with respect to the acyclic fibrations (resp. fibrations).

C• // // D•

The following diagram summarize the situation:

π•Dec(∆0 ×A)+
� � //

� _

��

π•Dec(X ×A)+� _

g

��

// π•Dec(X ∧A+) //

��

C

����
π•Dec(∆0 ×B)+

� � //

(0)

11

P•
� �

f
//

(1)

11

π•Dec(X ×B)+
//

(2)

33

π•Dec(X ∧B+) ////

(3)

88

D•

The morphism (0) : π•Dec(∆0 × B)+ → C• is the obvious morphism which sends
everything to the base point of C. The arrow (1) : P• → C• is constructed by the
universal property of the pushout

π•Dec∆0
+ ∧ π•DecA+

//

��

π•DecX+ ∧ πDecA+

��

��

π•Dec∆0
+ ∧ π•DecB+

//

(0)

..

P•
(1)

''
C•

Than, the arrow (2) is a lifting of the (acyclic) cofibration f .
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Finally, we construct the third arrow (3) : π•Dec(X ∧ B+) → C• which makes
the diagram commutes by the universal property of colimits. In fact, the following
diagram is a pushout in sCat.

π•Dec(∆0 ×B)+

��

// π•Dec(X ×B)+

�� (2)

��

∗ //

(0)

--

π•Dec(X ∧B+)
(3)

&&
C

because the functor π•Dec commutes with colimits.
we conclude that X• ∧− is a left Quillen functor, consequently (−)X• is a right

Quillen functor. �

5. Spectra SpN(sCat∗) and algebraic K-theory

This section is the outcome of this article. We define categories which look
like Waldhausen categories and we will suggest a new definition of algebraic
K-theory for pointed simplicial categories. In what follow, M is a cofibrantly
generated model category, cellular and left proper, equipped with a left Quillen
endofunctor T :M→M with a corresponding right Quillen adjoint U.

Definition 5.1. Objects of SpN(M,T) are sequences X = {X0, X1, . . . Xn, . . . }
of objects in M, equipped with sequence of compatible structural morphisms
σnX : TXn → Xn+1 for all n ∈ N. Morphisms in SpN(M,T) between X =
{X0, X1, . . . Xn, . . . } and Y = {Y0, Y1, . . . Yn, . . . } are degree wise morphisms inM
which commutes with the structural morphisms i.e., we have commutative diagrams
for each natural number n:

TXn
Tfn //

σX

��

TYn

σY

��
Xn+1

fn+1 // Yn+1.

Definition 5.2. A U-spectra in SpN(M,T) is a sequenceX = {X0, X1, . . . Xn, . . . }
such that Xn is fibrant in M for all n and the adjoint map of σX : TXn → Xn+1

i.e., τX : Xn → UXn+1 is a weak equivalence in M for all n.

Theorem 5.3. There exists a stable model structure on the category of spectra
SpN(M,T) where fibrant objects are U-spectres.

Proof. See [7] Theorem 3.4. �

In the model structure SpN(M,T), the left Quillen functor T : M → M is
extended to a left Quillen functor T : SpN(M,T) → SpN(M,T) which admits a
right adjoint denotes by s−. such that (s−X)n = Xn+1 for n > 0.
The adjunction (T, s−) is a Quillen equivalence (cf [7] Theorem 3.9). We should
remark that the derived functor LT became an invertible endofunctor in the ho-
motopy category HoSpN(M,T).
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We have also a Quillen adjunction between M and SpN(M,T) given by:

M
T∞ //

SpN(M,T)
(−)0

oo

where T∞(X) = {X,TX,TTX, . . . } and σnX = idTn+1X . The functor (−)0 asso-
ciate to each spectra X = {X0, X1, . . . Xn, . . . } the object X0.

Theorem 5.4. There is a cofibrantly generated stable model category structure on
SpN(sCat∗,Σ).

Proof. The category sCat∗ verify the hypothesis of 5.3 (cellular, left proper, cofi-
brantly generated), and the functor Σ = − ∧ S1 : sCat∗ → sCat∗, where S1

is a simplicial model for a circle, is a left Quillen functor 4.5, with a right adjoint
denoted by Ω. We conclude the stable model structure on SpN(sCat∗,Σ) exists. �

Definition 5.5. A simplicial category is called a weak complete Wladhausen
category if it is equivalent to a 0-object of some Ω-spectre in the stable category
of spectra SpN(sCat∗,Σ).

In some sense, a weak Wladhausen category is an infinite loop space in the
category of spectra sCat∗.In order to justify this definition we compute the mapping
space map∗ of the model category SpN(sCat∗,Σ). The following equivalences are
a direct consequence of 5.6.

Theorem 5.6. [[3], Theorem 2.12.] Let the following Quillen adjunction between
two model categories:

C
G //
M.

F
oo

then we have a natural ismorphism

mapC(a,RFb)→mapM(LGa, b)

in the category Ho(sSet)

A consequence of theorem 5.6 in the case of sCat where we consider the Quillen
adjunction between sSet, sSet2 and sCat gives us the following result:

Corollary 5.7. Let C• be a fibrant object in sCat and X ∈ sSet. We have a
natural ismorphism Ho(sSet):

mapsCat(πd∗X,C•)→Map(X,diagN•isoC•),

where Map is the right adjoint to the cartesian product in sSet.

Proof. The isomorphism mapsCat(πd∗X,C•) → mapsSet(X,diagN•isoC•) is a
direct consequence of 5.6. Since sSet is a simplicial model category we have that

mapsSet(X,diagN•isoC•) 'Map(X,diagN•isoC•)

in Ho(sSet).
�
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There is a natural transformation between diag and the functor W which is a
weak equivalence i.e., diag(X) → W (X) is a weak equivalence in sSet, for any
simplicial set X.
Let D•• = {D0

•,D
1
•, . . .D

n
• , . . . } be an Ω-spectra in SpN(sCat∗,Σ). We have a the

following corollaries:

Corollary 5.8. Let C• be a simplicial (pointed) category in sCat equipped with
the W -model structure. The adjunction

sSet
π d∗ //

sCat
diagN•iso
oo

gives us the isomorphism mapsCat(∗,C•) ∼ diagN•isoC• in Ho(sSet).

Corollary 5.9. If we denote by S0 the constant simplicial category ∗ t ∗, then the
adjunction:

sCat
(−)+ //

sCat∗
F
oo

gives us the isomorphism mapsCat∗(S
0,C•) ' mapsCat(∗,C•) ' diagN•isoC• in

Ho(sSet).

Corollary 5.10. The adjunction

sCat∗
Σ∞ //

SpN(sCat∗,Σ)
(−)0

oo

gives us the isomorphism mapSpN(sCat∗)(Σ
∞S0,D••) 'mapsCat∗(S

0,D0
•) ' diagN•isoD0

•.

Corollary 5.11. The adjunction

SpN(sCat∗,Σ)
Σ //

SpN(sCat∗,Σ)
s−
oo

induces an isomorphism

mapSpN(sCat∗)(ΣΣ∞S0,D••) 'mapSpN(sCat∗)(Σ
∞S0, s−D••) 'mapsCat∗(S

0,D1
•) ' diagN•isoD1

•

and more generally

mapSpN(sCat∗)(Σ
nΣ∞S0,D••) 'mapsCat∗(S

0,Dn
• ) ' diagN•isoDn

• .

Remark 5.12. Let Sn be a simplicial model for the sphere of dimension n, then
π•d∗S

n is a simplicial category and Σ(π•d∗Sn) ' π•d∗Sn+1.

By definition of mapsCat∗ and the fact that Dn
• → ΩDn+1

• is an equivalence in
sCat∗ between fibrant objects, we deduce the following corollary.

Corollary 5.13. Using the precedent Quillen adjunctions and 5.6, we have the
following isomorphisms in Ho(sSet) :

(1) mapsCat∗(ΣS
0,Dn+1

• ) 'mapsCat∗(S
0,ΩDn+1

• ) ' diagN•isoΩDn+1
• .

(2) mapsCat∗(ΣS
0,Dn+1

• ) 'mapsCat∗(π•d∗S
1,Dn+1

• ) ' ΩdiagN•isoDn+1
• .

(3) mapsCat∗(ΣS
0,Dn+1

• ) ' mapsCat∗(S
0,ΩDn+1

• ) ' mapsCat∗(S
0,Dn

• ) '
diagN•isoDn

• .
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5.1. Algebraic K-theory. As before, we suppose that D•• = {D0
•,D

1
•, . . .D

n
• , . . . }

is an Ω-spectra in SpN(sCat∗,Σ). In general the sequence of simplicial sets

{mapsCat∗(S
0,D0

•),mapsCat∗(S
0,D1

•), . . . }

does not form a spactra in SpN(sSet∗,Σ). This sequence is not an element of
SpN(sSet∗,Σ) but it has the property of an Ω-spectra, i.e.,

mapsCat∗(S
0,Dn

• ) ' ΩmapsCat∗(S
0,Dn+1

• ), ∀n ∈ N.

In some sense, an Ω-spectra D•• has the property that Dn+1
• is a model for the Wald-

hausen S•-construction for Dn
• , i.e., Dn+1

• is a model for S•Dn
• . Or equivalently,

Dn+1
• is a categorical delooping for Dn

• .

Definition 5.14. Let C• be a simplicial category (i.e., an objet of sCat∗) which
is a weak complete Waldhausen category 5.5, we define the algebraic K-theory of
C• by the simplicial set mapsCat∗(S

0,C•), so Ki(C•) = πimapsCat∗(S
0,C•).

Appendix A.

Lemma A.1. Let

C
G //
D

F
oo

be an adjunction, such that F commutes with directed colimits. If C ∈ C is a small
object for a certain ordinal β, then G(C) is small in D.

Proof. Suppose that we have a directed colimit colimα<βTα in D. We have the
following sequence of isomorphisms

homD(G(C), colimα<βTα) ' homC(C, F colimα<βTα)
' homC(C, colimα<β F (Tα))
' colimα<βhomC(C, F (Tα))
' colimα<βhomD(G(C), Tα)

The sequence ismomorphism, is a consequence of the fact that F commutss with
directed colimits. The rest of isomorphisms are obvious because C is β-small by
definition. �

Lemma A.2. In Moerdijk’s model category on bisimplicial sets, domains and
codomains of generating (acyclic) cofibrations I (J) are small.

Proof. The generating (acyclic) cofibration in sSet2 are the image of generating
(acyclic) cofibration via the fonctor d∗ of generating (acyclic) cofibration sSet.

sSet
d∗ //

sSet2

diag
oo

We recall that diag admits also a right adjoint denoted by d∗, so diag commutes
with colimits. Moreover objects in sSet are small for a certain ordinal. Let A be a
(co)domain of a generating acyclic cofibration in sSet, then d∗A is small in sSet2

by the lemma A.1. �

Lemma A.3. The functor diagN•iso : sCat → sSet commutes with directed col-
imits.
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Proof. Let colimλCλ
• be a directed colimit in sCat, for a certain ordinal λ.(

diagN•iso(colimλCλ
•)
)
n

= homsSet(∆n,diagN•iso(colimλCλ
•))

= homsCat(π• d∗(∆n), colimλCλ
•)

= homsCat(π•(t∆n∆n), colimλCλ
•)

= homsCat(t∆nπ(∆n), colimλCλ
•)

= homCat(π∆n, colimλCλ
n)

= colimλhomCat(π∆n,Cλ
n)

= colimλhomsCat(π• d∗∆n,Cλ
•)

= colimλhomsSet(∆n,diagN•isoCλ
•)

= colimλ

(
diagN•isoCλ

•

)
n
.

All the isomorphisms are consequence of adjunctions. The fifth isomorphisms is
due to the fact that π∆n is a small object in Cat. �

Lemma A.4. The domains and codomains of generating (acyclic) cofibrations in
sCat are small.

Proof. It is a consequence of A.1, A.3 and the fact that all objects in sSet are small
for a cetrain ordinal. �

References

[1] I. Amrani. Grothendieck’s homotopy hypothesis. Arxiv preprint arXiv:1112.1251, 2011.

[2] A.M. Cegarra and J. Remedios. The behaviour of the W-construction on the homotopy theory
of bisimplicial sets. manuscripta mathematica, 124(4):427–457, 2007.

[3] W.G. Dwyer and K. Hess. Long knots and maps between operads. Arxiv preprint

arXiv:1006.0874, 2010.
[4] P.G. Goerss and JF Jardine. Simplicial homotopy theory. Birkhauser, 1999.

[5] P. Hirschhorn. Model categories and their localizations. Mathematical Surveys and Monogr-

pahs, page 99, 2002.
[6] M. Hovey. Model categories. Mathematical Surveys and Monographs, 63, 1999.

[7] M. Hovey. Spectra and symmetric spectra in general model categories. Journal of Pure and

Applied Algebra, 165(1):63–127, 2001.
[8] F. Waldhausen. Algebraic K-theory of spaces. Algebraic and geometric topology (New

Brunswick, NJ), 1126:318–419, 1983.

[9] K. Worytkiewicz, K. Hess, P.E. Parent, and A. Tonks. A model structure a la Thomason on
2-Cat. J. Pure Appl. Algebra, 208(1):205–236, 2007.

Department of Mathematics, Masaryk University, Czech Republic
E-mail address: ilias.amranifedotov@gmail.com

E-mail address: amrani@math.muni.cz


