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Theorem (Kurita 1955). Let (M, g) be an n-dimensional

conformally flat Riemannian manifold. Then its local restricted

holonomy group Hx (x ∈ M) is in general SO(n). If Hx 6= SO(n),

then for some coordinate neighborhood U of x one of the following

holds:

1) Hx is identity and the metric is flat in U;

2) Hx = SO(k)× SO(n − k) and U is a direct product of a

k-dimensional manifold of constant sectional curvature K and

an (n − k)-dimensional manifold of constant sectional

curvature −K (K 6= 0);

3) Hx = SO(n − 1) and U is a direct product of a straight line

(or a segment) and an (n − 1)-dimensional manifold of

constant sectional curvature.
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One says that the connected holonomy group of an indecomposable

pseudo-Riemannian manifold is special if it is different from the

connected component of the pseudo-orthogonal group.

There are no conformally flat Riemannian manifolds with special

holonomy groups.
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A subgroup G ⊂ SO(r , s) (a subalgebra g ⊂ so(r , s)) is called

weakly irreducible if it does not preserve any non-degenerate

proper vector subspace of the tangent space.

A pseudo-Riemannian manifold is not locally decomposable iff its

connected holonomy group is weakly irreducible.
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Theorem. Let (M, g) be a conformally flat pseudo-Riemannian

manifold of signature (r , s) with the restricted holonomy group

Hol0(M, g). If (M, g) is not flat, then one of the following holds:

1) Hol0(M, g) = SO(r , s);

2) Hol0(M, g) is weakly irreducible and not irreducible;

3) Hol0(M, g) = SO(r1, s1)× SO(r − r1, s − s1) and (M, g) is

locally a product of a pseudo-Riemannian manifold of

constant sectional curvature K and signature (r1, s1) and a

pseudo-Riemannian manifold of constant sectional curvature

−K (K 6= 0) and signature (r − r1, s − s1);

4) Hol0(M, g) = SO(r − 1, s) (resp., Hol0(M, g) = SO(r , s − 1))

and (M, g) is locally a product of a pseudo-Riemannian

manifold of constant sectional curvature and signature

(r − 1, s) (resp., (r , s − 1)) and the space (L,−(dt)2) (resp.,

(L, (dt)2)), L is the straight line or a segment.Anton S. Galaev Conformally flat Lorentzian manifolds with special holonomy groups
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Lorentzian holonomy algebras.

Let (M, g) be a locally indecomposable Lorentzian manifold of

dimension n + 2 ≥ 4 and g ⊂ so(1, n + 1) be its holonomy algebra,

which is weakly irreducible.

If g ⊂ so(1, n + 1) is irreducible, then g = so(1, n + 1).

Any weakly irreducible holonomy algebra g ( so(1, n + 1) preserves

an isotropic line of the tangent space R1,n+1.
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Fix two isotropic vectors p, q ∈ R1,n+1 such that g(p, q) = 1. Let

E ⊂ R1,n+1 be the orthogonal complement to Rp ⊕ Rq. Then

R1,n+1 = Rp ⊕ E ⊕ Rq.

Denote by sim(n) the maximal subalgebra of so(1, n + 1)

preserving Rp.

In the matrix form:

sim(n) =


 a X t 0

0 A −X
0 0 −a


∣∣∣∣∣∣∣

a ∈ R,
X ∈ Rn,

A ∈ so(n)

 .
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Identify so(1, n + 1) with Λ2R1,n+1 in such a way that

(X ∧ Y )Z = (X ,Z )Y − (Y ,Z )X ,

then

sim(n) = (R⊕ so(n)) + Rn

= Rp ∧ q + so(E ) + p ∧ E .
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Theorem. (Berard-Bergery, Ikemakhen, Leistner, Galaev)

The Lorentzian holonomy algebras g ⊂ sim(n) are the following :

(type I) Rp ∧ q + h + p ∧ E ,

(type II) h + p ∧ E ,

(type III) {ϕ(A)p ∧ q + A|A ∈ h}+ p ∧ E ,

(type IV) {A + p ∧ ψ(A)|A ∈ h}+ p ∧ E1,

where h ⊂ so(E ) is a Riemannian holonomy algebra; ϕ : h→ R is

a non-zero linear map, ϕ|[h,h] = 0; for the last algebra E = E1⊕E2,

h ⊂ so(E1), and ψ : h→ E2 is a surjective linear ψ|[h,h].
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Let (M, g) be a Lorentzian manifold with the holonomy algebra

g ⊂ sim(n).

Locally there exist so called Walker coordinates v , x1, ..., xn, u such

that the metric g has the form

g = 2dvdu + h + 2Adu + H(du)2, (2.1)

where

h = hij(x
1, ..., xn, u)dx idx j is an u-family of Riemannian metrics,

A = Ai (x
1, . . . , xn, u)dx i is an u-family of one-forms,

H = H(v , x1, ..., xn, u) is a local function on M.
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On a Walker manifold (M, g) we define the canonical function λ

from the equality

Ric p = λp,

λ = 1
2∂

2
vH,

The scalar curvature of g :

s = 2λ+ s0, where s0 is the scalar curvature of h.
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The Main Theorem. Let (M, g) be a conformally flat Walker

Lorentzian manifold. Then locally

g = 2dvdu + Ψ
n∑

i=1

(dx i )2 + 2Adu + (λ(u)v2 + vH1 + H0)(du)2,

where

Ψ =
4

(1− λ(u)
∑n

k=1(xk)2)
2
,

A = Aidx
i , Ai = Ψ

(
−4Ck(u)xkx i + 2Ci (u)

n∑
k=1

(xk)2

)
,

H1 = −4Ck(u)xk
√

Ψ− ∂u ln Ψ + K (u),

s = −(n − 2)(n + 1)λ(u)
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Theorem.

If the function λ is non-vanishing at a point, then in a

neighborhood of this point there exist coordinates v , x1, ..., xn, u

such that

g = 2dvdu + Ψ
n∑

i=1

(dx i )2 + (λ(u)v2 + vH1 + H0)(du)2,

where

Ψ =
4

(1− λ(u)
∑n

k=1(xk)2)
2
,

H1 = −∂u ln Ψ, H0 =
√

Ψ

(
a(u)

n∑
k=1

(xk)2 + Dk(u)xk + D(u)

)
.
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Theorem. If λ ≡ 0 in a neighborhood of a point, then in a

neighborhood of this point there exist coordinates v , x1, ..., xn, u

such that

g = 2dvdu +
n∑

i=1

(dx i )2 + 2Adu + (vH1 + H0)(du)2,

where

A = Aidx
i , Ai = Ci (u)

n∑
k=1

(xk)2, H1 = −2Ck(u)xk

H0 =
n∑

k=1

(xk)2

(
1

4

n∑
k=1

(xk)2
n∑

k=1

C 2
k (u)− (Ck(u)xk)2 + Ċk(u)xk + a(u)

)
+ Dk(u)xk + D(u).

In particular, if all Ci ≡ 0, then the metric can be rewritten in the

form

g = 2dvdu +
n∑

i=1

(dx i )2 + a(u)
n∑

k=1

(xk)2(du)2. (2.2)
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Remarks.

The field equations of Nordström’s theory of gravitation, which

appeared before Einstein’s theory, are the following:

W = 0, s = 0.

Thus we have found all solutions to Nordström’s gravity with

holonomy algebras contained in sim(n).
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Similarly, the Einstein equation on Lorentzian manifolds with such

holonomy algebras was studied in

G. W. Gibbons, C. N. Pope, Time-Dependent Multi-Centre

Solutions from New Metrics with Holonomy Sim(n − 2), Class.

Quantum Grav. 25 (2008) 125015 (21pp).

In this case it is impossible to obtain the complete solution, but

the examples of solutions have interesting physical interpretations
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The case of dimension 4.

Possible holonomy algebras of conformally flat 4-dimensional

Lorentzian manifolds were classified also in

G. S. Hall, D. P. Lonie, Holonomy groups and spacetimes, Class.

Quantum Grav. 17 (2000), 1369–1382.

It is stated that it is an open problem to construct a conformally

flat metric with the holonomy algebra sim(2) (which is denoted in

by R14).
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An attempt to construct such metric is made in

R. Ghanam, G. Thompson, Two special metrics with R14-type

holonomy, Class. Quantum Grav. 18 (2001), 2007–2014

where the following metric was constructed:

g = 2dxdt+4ydtdy−4zdtdz+
(dy)2

2y2
+

(dz)2

2y2
+2(x+y2−z2)2(dt)2.

Making the transformation

x 7→ x − y2 + z2, y 7→ y , z 7→ z , t 7→ t,

we obtain

g = 2dxdt + 2x2(dt)2 +
(dy)2

2y2
+

(dz)2

2y2
.

This metric is decomposible and its holonomy algebra coincides

with so(1, 1)⊕ so(2), but not with sim(2).
Anton S. Galaev Conformally flat Lorentzian manifolds with special holonomy groups



Decomposability of conformally flat pseudo-Riemannian manifolds
Conformally flat Walker metrics

Thus we get metrics with the holonomy algebra sim(2) for the first

time (even more, we find all such metrics in all dimensions).
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Sketch of the proof of the Main Theorem.

g = 2dvdu + h + 2Adu + H(du)2,

where

h = hij(x
1, ..., xn, u)dx idx j is an u-family of Riemannian metrics,

A = Ai (x
1, . . . , xn, u)dx i is an u-family of one-forms,

H = H(v , x1, ..., xn, u) is a local function on M.

We must solve The equation W = 0.
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Consider the local frame

p = ∂v , Xi = ∂i − Ai∂v , q = ∂u −
1

2
H∂v .

Let E be the distribution generated by the vector fields X1,...,Xn.

Clearly, the vector fields p, q are isotropic, g(p, q) = 1, the

restriction of g to E is positive definite, and E is orthogonal to p

and q. The vector field p defines the parallel distribution of

isotropic lines and it is recurrent, i.e. ∇p = θ ⊗ p.
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Curvature of the walker metric

R(p, q) =− λp ∧ q − p ∧ ~v ,

R(X ,Y ) =R0(X ,Y )− p ∧ (P(Y )X − P(X )Y ),

R(X , q) =− g(~v ,X )p ∧ q + P(X )− p ∧ T (X ), R(p,X ) = 0

for all X ,Y ∈ Γ(E ).

λ is a function,

~v ∈ Γ(E ),

T ∈ Γ(End(E )) is symmetric, T ∗ = T ,

R0 = R(h),

P ∈ Γ(E ∗ ⊗ so(E ))
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λ =
1

2
∂2vH, ~v =

1

2

(
∂i∂vH − Ai∂

2
vH
)
hijXj ,

hilP
l
jk =− 1

2
∇kFij +

1

2
∇k ḣij − Γ̇l

kjhli ,

Tij =
1

2
∇i∇jH −

1

4
(Fik + ḣik)(Fjl + ḣjl)h

kl − 1

4
(∂vH)(∇iAj +∇jAi )

− 1

2
(Ai∂j∂vH + Aj∂i∂vH)− 1

2
(∇i Ȧj +∇j Ȧi )

+
1

2
AiAj∂

2
vH +

1

2
ḧij +

1

4
ḣij∂

2
vH,

where

F = dA, Fij = ∂iAj − ∂jAi
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The Ricci operator

Ric(p) =λp, Ric(X ) = −g(X , R̃icP − ~v)p + Ric(h)(X ),

Ric(q) =− (trT )p − R̃ic(P) + ~v + λq,

where R̃icP = hijP(Xi )Xj

Scalar curvature: s = 2λ+ s0
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Weyl tensor

W = R + RL,

where the tensor RL is defined by

RL(X ,Y ) = LX ∧ Y + X ∧ LY ,

L =
1

d − 2

(
Ric− s

2(d − 1)
Id

)
d = n + 2 is the dimension
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RL(p,X ) =
1

n
p ∧

(
Ric(h) +

(n − 1)λ− s0
n + 1

id

)
X ,

RL(p, q) =
1

n

(
2nλ− s0
n + 1

p ∧ q + p ∧ (~v − R̃icP)

)
,

RL(X ,Y ) =
1

n

(
p ∧ (g(X , ~v − R̃icP)Y − g(Y , ~v − R̃icP)X )

+

(
Ric(h)− s

2(n + 1)

)
X ∧ Y + X ∧

(
Ric(h)− s

2(n + 1)

)
Y

)
,

RL(X , q) =
1

n

(
(trT )p ∧ X + g(X , ~v − R̃icP)p ∧ q + X ∧ (~v − R̃icP)

+

(
Ric(h) +

(n − 1)λ− s0
n + 1

id

)
X ∧ q

)
.
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Lemma The equation W = 0 is equivalent to the following system

of equations:

s0 = −n(n − 1)λ, R0 = −1

2
λRid, P(X ) = ~v ∧ X , T = f idE ,

where X is any section of E and f is a function. In particular,

W = 0 implies that R̃icP = −(n− 1)~v and the Weyl tensor W0 of

h is zero.
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From the lemma it follows that

∂vλ = 0, hence

H = λv2 + H1v + H0, ∂vH1 = ∂vH0 = 0.
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Each metric in the family h(u) is of constant sectional curvature

with the scalar curvature s0 = −n(n − 1)λ.

The coordinates can be chosen in such a way that

h = Ψ
n∑

k=1

(dxk)2, Ψ =
4

(1− λ(u)
∑n

k=1(xk)2)
2
.

Now we must find the 1-form A and the functions H1 and H0.
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Part of the equations:

f1δij =
1

2
∇i∇jH1 − λ(u)

1

2
(∇iAj +∇jAi ).

These equations are equivalent to

∇iZi = ∇jZj , ∇iZj +∇jZi = 0, i 6= j ,

where

Zi = λAi −
1

2
∂iH1

and to

∂i

(
Zi

Ψ

)
= ∂j

(
Zj

Ψ

)
, ∂i

(
Zj

Ψ

)
+ ∂j

(
Zi

Ψ

)
= 0, i 6= j .
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Let n ≥ 3. Then

Zi = Ψ

(
x iBk(u)xk − 1

2
Bi (u)

n∑
k=1

(xk)2 + dik(u)xk + c(u)x i + ci (u)

)
.

Next,

λFij = ∂iZj−∂jZi = Ψ
3
2
(
(Bi−2λCi )x

j−(Bj−2λCj)x
i+2λxk(djkx

i−dikx j)
)
−2Ψdij .

This implies that Bi (u) = λ(u)B̃i (u) for some functions B̃i (u).
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Another equation: if i , j , k are pair-wise different, then

0 = ∇kFij = ∂kFij −
1

Ψ
Fij∂kΨ− 1

2Ψ
Fkj∂iΨ−

1

2Ψ
Fik∂jΨ

= Ψ∂k

(
Fij
Ψ

)
− λFkjx i

√
Ψ− λFikx j

√
Ψ.

Consequently,

−∂k
(
Fij
Ψ

)
= λxkΨ

(
(B̃j−2Cj)x

i−(B̃i−2Ci )x
j
)
+2
√

Ψ(x idkj−x jdki )
)
+2λΨxk(x jdil−x idjl)x l .

Integrating over xk , we get

Fij = Ψ
3
2
(
(B̃i−2Ci )x

j−(B̃j−2Cj)x
i+2(dlix

j−dljx i )x l
)
−ΨCij(x

i , x j , u)
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Using other equations, we get

Fij = Ψ
3
2
(
4Cj(u)x i−4Ci (u)x j+λ(u)(Cli (u)x j−Clj(u)x i )x l

)
−ΨCij(u).

Recall that F = dA.

the transformation v 7→ v − φ(x1, ..., xm, u) changes Ai to

Ai + ∂iφ and does not change F . This allows us to choose any A

such that dA = F . We take

Ai = Ψ

(
−4Ck(u)xkx i + 2Ci (u)

n∑
k=1

(xk)2 +
1

2
Cik(u)xk

)
.
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We are left with the equations

∂iH1 = −2Ψ

(
2λCk(u)xkx i − λCi (u)

n∑
k=1

(xk)2 +
1

2
λ̇x i + Ci (u)

)

∂i∂j
H0√

Ψ
= 2Ψ

3
2 x ix j

n∑
k=1

C 2
k (u).

H1 = −4Ck(u)xk
√

Ψ− ∂u ln Ψ + K (u)

H0 =
4

λ2(u)
Ψ

n∑
k=1

C 2
k (u) +

√
Ψ

n∑
k=1

fk(xk , u),

fi (x
i , u) = a(u)(x i )2 + Di (u)xi + di (u)
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The Main Theorem. Let (M, g) be a conformally flat Walker

Lorentzian manifold. Then locally

g = 2dvdu + Ψ
n∑

i=1

(dx i )2 + 2Adu + (λ(u)v2 + vH1 + H0)(du)2,

where

Ψ =
4

(1− λ(u)
∑n

k=1(xk)2)
2
,

A = Aidx
i , Ai = Ψ

(
−4Ck(u)xkx i + 2Ci (u)

n∑
k=1

(xk)2

)
,

H1 = −4Ck(u)xk
√

Ψ− ∂u ln Ψ + K (u),

s = −(n − 2)(n + 1)λ(u)
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