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Abstract. We analyse nonlinear rigid symmetries of hypersur-
faces of finite Catlin multitype in C3. The results provide a com-
plete classification of such manifolds. They are formulated in terms
of the structure of chains for nonlinear holomorphic vector fields.

1. Introduction

One of the central problems in CR geometry is the classification of
real hypersurfaces up to biholomorphic equivalence. A complete solu-
tion of this problem should also lead to a complete understanding of
automorphism groups of such manifolds.

When the hypersurface is Levi nondegenerate, the problem is well
understood, thanks to the classical work of Chern and Moser [11]. In
particular, the infinitesimal automorphisms of such manifold form a
graded Lie algebra with at most 5 components. Moreover, by results of
Beloshapka, if the manifold is not equivalent to the sphere, there are
at most 3 graded components, and all infinitesimal automorphisms are
linear in appropriate coordinates.

In a recent paper of the authors and D. Zaitsev, the same problem
is considered for Levi degenerate hypersurfaces with weighted homoge-
neous polynomial models in the sense of finite multitype, which replace
the model hyperquadric from the nondegenerate case.

All possible structures of symmetry algebras of Levi degenerate hy-
persurfaces are described there. Compared to the Levi nondegenerate
case, there are in general 6 possible components. The new phenome-
non is the existence of nonlinear symmetries in the compex tangential
variables (termed rigid), which are of strictly positive weight.

The local geometry of Levi degenerate hypersurfaces is in general
quite complicated even on the initial level: the basic model object from
the nondegenerate case - a hermitian form which defines the model
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hypersurface - is now replaced by a weighted homogeneous polynomial.
More precisely, the initial invariant is captured by the notion of Catlin
multitype ([9], [23], see also Section 2)

In this paper we describe completely this class of symmetries for
hypersurfaces of finite multitype in C3.

2. Finite multitype and symmetries

Let M ⊆ C3 be a smooth hypersurface, and p ∈ M be a point of
finite type m ≥ 2 in the sense of Kohn and Bloom-Graham ([1], [6],
[20]).
We consider local holomorphic coordinates (z, w) vanishing at p, where
z = (z1, z2) and zj = xj + iyj, j = 1, 2, and w = u+ iv. The hyperplane
{v = 0} is assumed to be tangent to M at p, hence M is described near
p as the graph of a uniquely determined real valued function

(2.1) v = ϕ(z1, z2, z̄1, z2, u), dϕ(0) = 0.

We cay assume that (see e.g. [1])

(2.2) ϕ(z1, z2, z̄1, z̄2, u) = Pm(z, z̄) + o(u, |z|m),

where Pm(z, z̄) is a nonzero homogeneous polynomial of degree m with-
out pluriharmonic terms.

Recall that the definition of multitype involves rational weights as-
sociated to the variables w, z1, z2. Roughly speaking, it measures the
vanishing of a defining function in each of the variables

The variables w, u and v are given weight one, reflecting our choice
of tangential and normal variables. The complex tangential variables
(z1, z2) are treated according to the following definitions (for more de-
tails, see [23]).

Definition 2.1. A weight is a pair of nonnegative rational numbers
Λ = (λ1, λ2), where 0 ≤ λj ≤ 1

2
, and λ1 ≥ λ2.

Let Λ = (λ1, λ2) be a weight, and α = (α1, α2), β = (β1, β2) be
multiindices. The weighted degree κ of a monomial

q(z, z̄, u) = cαβlz
αz̄βul, l ∈ N,

is defined as

κ := l +
2∑
i=1

(αi + βi)λi.

A polynomial Q(z, z̄, u) is weighted homogeneous of weighted degree
κ if it is a sum of monomials of weighted degree κ.

For a weight Λ, the weighted length of a multiindex α = (α1, α2) is
defined by
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|α|Λ := λ1α1 + λ2α2.

Similarly, if α = (α1, α2) and α̂ = (α̂1, α̂2) are two multiindices, the
weighted length of the pair (α, α̂) is

|(α, α̂)|Λ := λ1(α1 + α̂1) + λ2(α2 + α̂2).

The weighted order κ of a differential operator

D =
∂|α|+|α̂|+l

∂zα∂z̄α̂∂ul

is equal to
κ := l + |(α, α̂)|Λ

Definition 2.2. A weight Λ will be called distinguished for M if there
exist local holomorphic coordinates (z, w) in which the defining equa-
tion of M takes form

(2.3) v = P (z, z̄) + oΛ(1),

where P (z, z̄) is a nonzero Λ - homogeneous polynomial of weighted
degree 1 without pluriharmonic terms, and oΛ(1) denotes a smooth
function whose derivatives of weighted order less than or equal to one
vanish.

The fact that distinguished weights do exist follows from (2.2). For
these coordinates (z, w), we have

Λ = (
1

m
,

1

m
).

In the following we shall consider the standard lexicographic order
on the set of pairs.

We recall the following definition (see [9]).

Definition 2.3. Let ΛM = (µ1, µ2) be the infimum of all possible
distinguished weights Λ with respect to the lexicographic order. The
multitype of M at p is defined to be the pair

(m1,m2),

where

mj =

{
1
µj

if µj 6= 0

∞ if µj = 0.

If none of the mj is infinity, we say that M is of finite multitype at
p.

Clearly, since the definition of multitype includes all distinguished
weights, the infimum is a biholomorphic invariant.
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Coordinates corresponding to the multitype weight ΛM , in which the
local description of M has form (2.3), with P being ΛM -homogeneous,
are called multitype coordinates.

Definition 2.4. Let M be given by (2.3). We define a model hyper-
surface MH associated to M at p by

(2.4) MH = {(z, w) ∈ Cn+1 | v = P (z, z̄)}.

3. Nonlinear automorphisms

In this section we study nonlinear automorphisms of hypersurfaces
of finite multitype a derive an explicit description of all hypersurfaces
which admit a generalized rotation.

Let us first recall the following definitions.

Definition 3.1. Let X be a holomorphic vector field of the form

(3.1) X =
2∑
j=1

f j(z, w)∂zj + g(z, w)∂w.

We say that X is rigid if f 1, f 2, g are all independent of the variable w.

Note that the rigid vector field W, of homogeneous weight −1, given
by

(3.2) W = ∂w

lies in aut(MP , p). We will denote by E the weighted homogeneous
vector field of weight 0 defined by

(3.3) E =
2∑
j=1

µjzj∂zj + w∂w.

E is the weighted Euler field. Note that by definition of µj, E is a non
rigid vector field lying in aut(MP , p).

We can divide homogeneous rigid vector fields into three types, and
introduce the following terminology.

Definition 3.2. Let X ∈ aut(MP , p) be a rigid weighted homogeneous
vector field. X is called

(1) a shift if the weighted degree of X is less than zero;
(2) a rotation if the weighted degree of X is equal to zero;
(3) a generalized rotation if the weighted degree of X is bigger

than zero and less than one.
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Lemma 3.3. Let X = f1
∂
∂z1

+ f2
∂
∂z2

be a homogeneous vector field.
Then the space of homogeneous polynomials in z of degree p annihilated
by X has complex dimension at most one.

Proof. Suppose that P is given by

(3.4) P (z) =
∑

Ajz1
jz2

p−j, Qk̂
dk

f1 and f2 by

(3.5) f1(z) =
∑

F1kz1
kz2

q−k, f2(z) =
∑

F2kz1
kz2

q−k

Applying X to P, we get

(3.6)
∑
j,k

F1kz1
kz2

q−kjAjz1
j−1z2

p−j

+
∑
j,k

F2kz1
kz2

q−k(p− j)Ajz1
jz2

p−j−1 = 0

Rewriting (3.6), we obtain

(3.7)
∑
j,k

(jF1kAj + (p− j + 1)F2kAj−1)z1
(j+k)−1z2

p+q−(j+k) = 0,

with A−1 := 0.
Let k0 be the smallest integer such that

max(|F1k0 |, |F2k0|) 6= 0.

Without loss of generality, we may assume F1k0 6= 0. (Otherwise we
exchange the role of z1 with z2.)
Using (3.7), we obtain then recursively Al as

(3.8) lAlF1k0 = H(A0, . . . , Al−1),

where H is a linear function. Since F1k0 6= 0, every Al depends on A0,
and therefore the dimension of the space of such P is at most one. This
achieves the proof of the lemma. �

Lemma 3.4. Let Vn, n ∈ N, be the space

(3.9) Vn = {X|Y n(X) = 0, }

where X is a holomorphic polynomial of a given constant weighted
length and Y is a weighted holomorphic vector field. Then

(3.10) dimVn ≤ n.
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Moreover, when dn = dimVn > 0, one can choose a basis for Vn of the
form
(3.11)
{F n

s , s = 1, 2, . . . , dn − 1| Y dn(F n
dn) = 0, Y dn−1(F n

dn) 6= 0, Y dn−1(F n
s ) = 0}

Proof. We prove the lemma by induction. The case n = 1 is a direct
application of the previous Lemma. Suppose now that the lemma is
true for n and prove it for n+ 1. We have

(3.12) Vn+1 = {X|Y n+1(X) = 0} = {X|Y n(Y (X)) = 0}.

By induction, we obtain that
(3.13)
Y (X) ∈ span[F n

s , s = 1, 2, . . . , dn − 1| Y dn(F n
dn) = 0, Y dn−1(F n

dn) 6= 0, Y dn−1(F n
s ) = 0]

which implies that

(3.14) dimVn+1 ≤ n+ 1.

After performing a linear combination of the solutions X of (3.13), we
may satisfy (3.11). �

Let MP be given by

(3.15) MP = {(z, w) ∈ Cn+1 | v = P (z, z̄)}.

Theorem 3.5. Let MP be given by (3.15) , and let Y be a generalized
rotation for MP . Then P can be decomposed in the following way

(3.16) P =
M∑
j=1

(

Nj∑
k=1

Qk
jQ

Nj−k+1
j ),

where Qk
j is a nonzero polynomial in z with constant weighted length

|αk|ΛM
=: ck, ck + cNj−k+1 = 1, ordered such that cj < ck for j < k,

with

(3.17)

Nj∑
k=1

Qk
jQ

Nj−k+1
j

real, and

(3.18) Y (Qk
j) = dk,jQ

k+1
j , dk,j ∈ C.

Proof. Let

(3.19) P =
l∑

k=1

Pk,
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where P1 6= 0, Pl 6= 0. We first consider the sum of terms in P that are
of constant weighted length c1 with respect to z. We may write them
as

(3.20) P1 =
r∑
j=1

Sc1j S
ĉ1
j ,

with r minimal. We claim that r = 1. Since Y is a generalized rotation,
we must have

(3.21) Y (
r∑
j=1

Sc1jS
ĉ1
j ) =

r∑
j=1

Sc1j Y (S ĉ1j ) = 0.

Since r is minimal, this implies that

(3.22) Y (S ĉ1j ) = 0.

Using Lemma 3.4, we conclude, using (3.22), that

(3.23) S ĉ1j ∈ [S ĉ11 ]

for some S ĉ11 holomorphic polynomial of weight ĉ1. We may then write
P1 as

(3.24) P1 = Qc1
1 Q

ĉ1
1 .

Hence, r = 1 and the claim is proved. We consider the sum of terms in
P that are of constant weighted length ck with respect to z such that
ck = ck−1 + ν, where ν > 0 is the weight of Y. We may write them as

(3.25) Pk =
r∑
j=1

Sckj S
ĉk
j ,

with rk minimal. We claim that Pk can be rewritten as

(3.26) Pk = Qck
k Q

ĉk
k + P̃k

such that there is a dk ≤ k such that

(3.27) Y dk(Qĉk
k ) = 0, Y dk−1(Qĉk

k ) 6= 0, Y dk−1(P̃k) = 0.

We prove the claim by induction. The case k = 1 has just been
proved.

Suppose by induction that (3.26) holds for k. Since Y is a generalized
rotation, we have

(3.28) Y (Qck
k)Q

ĉk
k + Y (P̃k) +

rk+1∑
j=1

Sck+1
k+1Y (S

ˆck+1

k+1 ) = 0.
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Applying Y
dk

to (3.28), we get

(3.29)

rk+1∑
j=1

S
ck+1

k Y dk+1(S
ˆck+1

k+1 ) = 0.

Since rk+1 is minimal,

(3.30) Y dk+1(S
ˆck+1

k+1 ) = 0

for all j. Using Lemma 3.4, we obtain that rk+1 ≤ dk + 1 ≤ k + 1.
Using (3.11), we may then rewrite Pk+1 in the form given by (3.26).
The claim is then proved. Let t1 ≤ l be minimal such that

Y (Qck
k ) 6= 0, k = 1, . . . , t1 − 1, Y (Qct1

t1) = 0.}
We consider the following set S1 given by

(3.31) S1 = {Qck
kQ

ĉk
k, k = 1, . . . , t1}

Note that this set is not empty since Y (Qcl
l ) = 0.

We claim that the following holds for every element of S1.

• dk = k, k = 1, . . . , t1.

• Y (Qck
k) = akQ

ck+1

k+1 ,

• Y (Q ˆck+1
k+1) = b ˆk+1Q

ĉk
k +Rk, where Y k−1(Rk) = 0.

We show that dk = k using induction as above. Indeed, suppose that
this is true for k < t1 − 1 and show that this true for k + 1. Using the
fact that Y is a generalized rotation, we have as in (3.28)

(3.32) Y (Qck
k )Qĉk

k k + Y (P̃k) + (Qck+1
dk+1

)Y (Q ˆck+1

dk+1
)+Y ( ˜Pk+1) = 0.

Applying Y
k−1

to (3.32), we obtain

(3.33) Y (Qck
k )Y

k−1
(Qĉk

k ) + (Qck+1
dk+1

)Y
k
(Q ˆck+1

dk+1
) = 0.

Hence, using (3.33), dk+1 = k + 1 by definition of S1, and hence

(3.34) Y (Qck
k k) = akQ

ck+1

k+1 .

(3.35) Y k(Q ˆck+1
k+1) = b ˆk+1Y

k−1Qĉk
k,

which implies

(3.36) Y k−1(Y (Q ˆck+1
k+1)− b ˆk+1Q

ĉk
k) = 0,

and hence

(3.37) Y (Q ˆck+1
k+1) = b ˆck+1

Qĉk
k +Rk,
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where Y k−1(Rk) = 0. This achieves the proof of the claim. Using (3.37)
and (3.26), we may then assume without loss of generality that Rk = 0.
Putting for

(3.38)


Qk

1 := Qck
k ,

Qt1+k
1 := Q

ˆct1−k+1

k ,

N1 = 2t1.

we obtain for k = 1, . . . , N1

(3.39) Y (Qk
1) = dk,1Q

k+1
1, dk,1 ∈ C, dt1,1 = 0.

In other words, we may write

(3.40) Pk = Qk
1Q

k̂
1 + P̃k, k = 1, . . . , t1,

where P̃k is given by (3.26). If t1 < l, we claim that the following holds:

(3.41) dk < k, k = t1 + 1, . . . , l.

Indeed, using (3.32), we obtain

(3.42) Y (P̃t1) + (Qct1+1
dt1+1

)Y (Q ˆct1+1
dt1+1

) + Y ( ˜Pt1+1) = 0.

Applying Y
t1−1

to (3.42), we obtain that

(3.43) Y
t1

(Q ˆct1+1
dt1+1

) = 0,

and hence

(3.44) dt1+1 < t1 + 1,

which implies, using the same process, that

dk < k, k = t1 + 1, . . . , l.

This achieves the proof of the claim. We now consider

(3.45) P1,k :=

{
P̃k, k = 1, . . . t1
Pk, k = t1 + 1, . . . , l

Using (3.41), we obtain

(3.46) Y k−1(P1,k) = 0.

We may then apply the technic we used for Pk to P1,k to define a set
S2 as in (3.31), and define a chain as in (3.38). Hence, after a finite
number of steps, using the same process as above, we will reach the
conclusion of the theorem. �
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